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Abstract

We develop a structural model to represent individual transportation decisions, the
equilibrium road traffic levels, and speeds inside a city. The model is micro-founded and
incorporates a high level of heterogeneity: individuals differ in access to transportation
modes, values of travel time, and schedule constraints; road congestion technologies vary
within the city. We apply our model to the Paris metropolitan area and estimate the
model parameters from publicly available data. We predict the road traffic equilibria
under driving restrictions and road tolls and measure the policy consequences on the
different welfare components: individual surplus, tax revenues, and cost of emissions.
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1 Introduction
Road traffic reduction has been crucial in large metropolitan areas because of the multiple
negative externalities cars generate. For instance, INRIX estimates an annual aggregate cost
of congestion of 87 billion dollars for the U.S.1 Pollution levels and air quality are also tightly
related to the number of cars on the road. Yet, changes in road traffic level are difficult to
predict because the road traffic level is the consequence of an equilibrium in which individuals
make their transportation decisions independently. However, these individual decisions affect
everyone since car speeds, and individual trip durations ultimately depend on the traffic level.
Predicting individual reactions to a change in their transportation environment is challenging
since it requires knowing how road traffic equilibrium is modified after individuals make their
transportation decisions. Observational studies that measure the direct impact of a change
in the transportation environment are limited by only being able to compare two equilibria,
failing to separately identify the individual reactions from the equilibrium adjustments. We
define transportation environment as all the factors that affect individual transportation
decisions and are exogenous to individuals, including the presence of urban traffic regulations.

We develop a novel framework to analyze individual responses to changes in their trans-
portation environments in equilibrium. It is a structural model representing equilibrium
traffic conditions in a metropolitan area, with essential dimensions of heterogeneity at the
individual and geographical levels. The first part of the model represents the choice of a
transportation mode and a departure time by individuals with heterogeneous but fixed travel
patterns (origin, destination, and itinerary). Since individuals have distinct travel patterns,
different available transportation modes, and schedule flexibility, they are likely to react
differently to a change in the transportation environment. Our model considers different
transportation modes to be imperfect substitutes. We also account for possible schedule
constraints, implying that individuals cannot substitute across departure times without utility
loss. More precisely, we rely on a discrete choice nested logit model, containing heterogeneity
in choice sets, sensitivities to trip duration, and preferences for the different departure times.
The second part of the model represents the road congestion technologies, which describes
how driving speeds react to changes in the number of individuals using cars and how many
kilometers they drive. Our model takes into account spatial heterogeneity by allowing the
road technology to be different across areas of the city.

The model has the advantage of being transparent, tractable, and estimable with combi-
nations of data that are typically publicly available for many metropolitan areas. We also

1Source: https://www.cnbc.com/2019/02/11/americas-87-billion-traffic-jam-ranks-boston
-and-dc-as-worst-in-us.html.
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provide a methodology to verify whether the model parameters are such that the equilibrium is
unique. This model differs from existing ones in three key aspects. First, the model represents
equilibrium transportation decisions for the entire metropolitan area rather than focusing
on a specific road. Second, it accounts for different types of roads with possibly different
congestion technologies instead of considering one city-wide congestion technology. Third,
all the model parameters are estimated and represent the joint distribution of preferences,
trip distances and itineraries, individual characteristics, and transportation mode choice set,
which is key to analyzing the effects of changes in the transportation environment at the
individual level. To allow for such individual heterogeneity, we consider some factors are
exogenous. In particular, we hold fixed residential locations and trip destinations, and we
do not allow individuals to change where they live or work in response to a change in the
transportation environment.2 We also assume that the transportation modes available to an
individual are fixed. While the choice of holding a car and the car characteristics (e.g., fuel
efficiency) may be affected by traffic regulations in the medium run, we keep them constant
in our analysis. Finally, we focus on unavoidable trips (work or study trips) and thus consider
individuals who have to take their trips and do not model the number of trips.

We apply our model of transportation decisions and congestion to the Paris metropolitan
area (Île-de-France region) and combine data from different sources to estimate the model
parameters. We rely on a survey conducted in 2010 and 2011, where respondents provided
detailed information about all the trips taken the day before the interview. We construct a
final sample of 12,975 individuals to estimate the transportation mode choice model. The
survey does not provide trip durations using the non-chosen alternative transportation modes
or car trip durations for alternative departure times. We supplement the survey with data on
expected travel times using Google Directions for public transport and TomTom application
programming interfaces (API, hereafter) for private vehicles during peak and off-peak hours
to overcome this issue. We estimate the congestion technologies using high-frequency data
on traffic density and speed from road sensors at the day and hour level for 1,371 sensors
covering the highways, the ring roads, and the city center. We also use subway and suburb
train ridership data to approximate overcrowding levels in the different metro and train lines
at peak and off-peak hours.

We use our structural model and estimated parameters to predict the effects of policy
instruments that reduce road traffic. More specifically, we compare the effects of road tolls
to simple driving restrictions. The advantage of driving restrictions is the simplicity of

2In our data, the first reason for choosing a residence is the price or size of the house (with 43.1% of
respondents), while proximity to work and public transport come after (with 16.5% and 1.9% of respondents,
respectively).
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implementation, only requiring compliance controls and are often used as emergency schemes,
temporary measures put in place under pollution peaks episodes.3 Driving restrictions
constitute a command and control policy instrument. An alternative consists of sending price
signals through road tolls. Indeed, road tolls have been introduced in many European cities.
For instance, Stockholm and London use systems of congestion charges, restricting access to
the city center during peak hours of weekdays to those who pay a fee. Price mechanisms have
the advantage of sorting individuals according to the benefits they get from driving: those
who stop driving at peak hours have good transportation alternatives to driving or fewer
schedule constraints, limiting the welfare costs of traffic regulations. Driving restrictions
affect all individuals identically, which seems inefficient. In addition, road tolls generate tax
revenue that can be redistributed to individuals, mitigating the surplus losses.

In the main analysis, we compare the effects of three simple policies: driving restrictions,
fixed tolls, and variable tolls. The policies are restricted to peak hours, so we consider
individuals free to drive during off-peak hours. First, we analyze the aggregate effects of
different policy stringency levels. We find that all the regulations are costly for individuals,
as speed gains cannot compensate for the losses from the constraints imposed by the policies.
Under moderate stringency levels, both tolls improve aggregate welfare if their revenues are
redistributed. From the aggregate consumer surplus perspective only, driving restrictions
hurt individuals less than an uniform toll. They force everyone to contribute to the traffic
reduction while tolls must be high to induce the same traffic reduction. Across tolls, the
variable toll is more efficient than the uniform toll since it targets long-distance commuters,
who exert the largest congestion externalities. However, the uniform toll is best at maximizing
the tax revenue. These results indicate that the policymaker must arbitrage between different
objectives. Next, we fix a stringency level and measure the policy costs and benefits. We find
aggregate surplus losses between e0.7 million and e1.5 million per trip. We also measure the
impacts of the policies on global pollutant emissions (carbon emissions, CO2 hereafter) and
local pollutant emissions: nitrogen oxide (NOX), particulate matter (PM), and hydrocarbon
(HC) emissions. The benefits from reducing emissions, computed using standard social values,
compensate only between 2.4% and 4.5% of the surplus losses. We also go beyond the
aggregate impacts of tolls and driving restrictions and analyze their distributional effects.
The variable tolls generate the largest inequalities across individuals. Individuals with long-
distance trips that do not have suitable public transport alternatives are most negatively
impacted.

3Paris and the surrounding region have used alternate traffic restrictions based on license plate digits six
times between 1997 and 2016. The longest alternate-day travel scheme lasted four days from December 6th

to 9th 2016. Since 2017, emergency plans triggered due to pollution peaks have relied on targeted driving
restrictions based on car vintage and fuel type combination.
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Lastly, we investigate whether we can reduce surplus losses by using more sophisticated
policy instruments or by combining policies with other interventions. We study a first-best
benchmark where the policy maker sets personalized tolls to maximize welfare. Welfare gains
are 63% larger and emissions reductions 27% larger than under the variable toll. However,
the aggregate consumer surplus always decreases, and welfare improves because of the high
tax revenues. We also study more realistic policies like car vintage or fuel-based driving
restrictions, area-specific or combined variable and fixed tolls, and driving licenses allocated
through an auction. These instruments do not perform significantly better than the simple
ones for surplus losses and emission reductions. We also measure the potential gains from
differentiated tolls according to the area and nonlinear variable tolls. Finally, we evaluate the
role of access to public transport, public transport efficiency, and cost for surplus losses. We
find that connecting the 28.5% of the population which currently does not have access to
public transportation and improving public transport speed are the best ancillary instruments
to reduce policy surplus losses.

Barwick et al. (2021) estimate a model that is the most similar to ours to analyze the
impact of tolls and driving restrictions on commuting choices and equilibrium congestion
levels in Beijing. In addition, they endogenize individual housing location decisions and
investigate the policies’ effects on residential sorting. To do so, they rely on rich individual
data that include housing prices and characteristics, household characteristics, and individual
work locations. Their model endogenizes the residential location, which we consider fixed in
our model. However, they have a more restrictive representation of the congestion technology
in the city since they assume a single congestion technology with a constant speed elasticity.

Kreindler (2022) also estimates a structural model of transportation decisions to analyze
the welfare effects of congestion pricing in India. He leverages experimental data to estimate
departure time substitution patterns and price sensitivity. His model differs from ours in
several aspects: it includes separate costs for being early, late, or spending time in traffic (in
the spirit of traditional bottleneck models) and allows for substitution across routes rather
than transportation modes. Tarduno (2022) develops a structural model of transportation
decisions with route and departure time substitution for a bridge in San Francisco metropolitan
area in the U.S. His results highlight the importance of accounting for policy leakage, i.e.,
route substitution, and he characterizes the second-best tolls that account for it. However,
his model is quite different from ours since he abstracts from mode substitution, does not
model the congestion technology, and ignores the effects of individual decisions on equilibrium
speeds.

We relate and extend the transportation literature linking individuals’ decisions and
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congestion. For instance, Basso and Silva (2014) model the choice between driving and
taking the bus and the substitution between peak and off-peak hours over a single road
to compare the effectiveness of public transport improvements and road tolls. Like in our
model, both periods are associated with different congestion levels that depend on car and
bus usage. However, the approach is different since they calibrate the model and ignore
other transportation modes. Batarce and Ivaldi (2014) estimate a mode choice model with
endogenous congestion based on the number of individual trips. Driving at any point in time
generates congestion for the whole day.

Other empirical models that represent transportation decisions and congestion are based
on the bottleneck model of Arnott et al. (1990) and Arnott et al. (1993). These models
have the advantage of carefully describing congestion dynamics for a single road but ignore
the substitution between driving and other transportation modes. Indeed, Anderson (2014)
shows that the substitution between cars and public transport significantly affects congestion
levels. Van Den Berg and Verhoef (2011) and Hall (2021) use bottleneck models to measure
the distributional effects of road tolls. Both studies show that congestion pricing can improve
consumer surplus without toll revenue redistribution due to sorting individuals according to
their value of travel time. We find that road tolls never increase the total consumer surplus
without redistributing the toll revenue like Barwick et al. (2021) and Kreindler (2022), who
make similar assumptions to ours. One reason for finding adverse effects of road tolls on
consumer surplus is that we model traffic level at the period level instead of using a continuous
time measure, ignoring the sorting of individuals within the period. Furthermore, we consider
all roads tolled while Hall (2018) and Hall (2021) consider policies that price a fraction of the
roads.

The methodology of our paper relies on standard methods to estimate substitution patterns
between transportation modes and departure times. Discrete choice models have indeed a
long tradition of being used to model transportation mode choices (McFadden, 1974, Small,
2012) and estimate the value of travel time (VOT). Recent literature has relied on new
data to estimate the VOT. For instance, Small et al. (2005) estimates individuals’ VOT
and valuations of travel time reliability using a mix of revealed and stated preferences data.
Bento et al. (2020) use data from drivers entering an expressway subject to a toll in Los
Angeles to disentangle the value of urgency from the VOT of individuals, highlighting the
role of schedule constraints on individuals’ willingness to pay for road tolls. Buchholz et al.
(2020) exploits data from a ride-sharing platform to retrieve individuals’ VOT. They exploit
variations in prices and waiting times to recover the distribution of VOT in the population.
Recent work have implemented field experiments to elicit directly travel time valuations
(Kreindler, 2022, Goldszmidt et al., 2020, Hintermann et al., 2021). Our estimates of the
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VOT rely much more on the model structure since we rely on standard cross-sectional survey
data. Our estimates are nevertheless consistent with the estimates from this literature.

Our reduced-form model for the congestion technology extends the work from the literature
in two ways. First, we do not impose a linear relationship between speed and traffic density
as in Russo et al. (2021), Yang et al. (2020), Couture et al. (2018), Akbar and Duranton
(2017). We estimate the relationships between speed and traffic density flexibly and find
that the marginal impact of traffic on speed is not constant. Second, we do not assume a
single congestion level for the whole city. Instead, we estimate five area-specific congestion
technologies and model the equilibrium traffic level in each area and each period. Both
differences from the standard literature have an important consequence: the marginal cost of
congestion varies with the traffic level and the city area.

This paper relates to the literature measuring the impacts of existing traffic regulations
using direct policy evaluation methods. The initial literature focused on developing countries
with long traditions of urban traffic policies. Davis (2008), and Gallego et al. (2013) show
that driving restrictions reduce pollution in the short run but are harmful in the long run
because individuals bypass the restriction by purchasing a second car. Recent studies evaluate
European policies such as low emissions zones, congestion charges, and road closures (Galdon-
Sanchez et al., 2021, Tassinari, 2022, Herzog, 2022, Bou Sleiman, 2021). Our analysis is
different in terms of method and focus. First, we evaluate hypothetical policies. Second,
we analyze the heterogeneity of the policy effects across individuals and their distributional
consequences. We can also provide estimates for unobserved outcomes that can be expressed as
a function of the model parameters, like consumer surplus. Previous literature on urban traffic
policies in Paris (De Palma and Lindsey, 2006, Kilani et al., 2014) models the equilibrium
traffic level with a less detailed characterization of individual preferences and limited mode
substitution. The Metropolis model (De Palma et al., 1997) incorporates a version of the
bottleneck model into a calibrated citywide traffic simulator for the Paris metropolitan area.
However, this model relies on external parameters. One advantage of our framework is that
all parameters are estimated, and the model equations are transparent. De Palma et al.
(2017) and Haywood and Koning (2015) study the role of public transport quality in Paris
for driving decisions. These studies focus on specific subway lines and ignore alternative
transportation modes.

Our analysis is related to spatial equilibrium models interested in the locations of individuals
and activities and the role of transportation policies. For instance, some recent papers has
focused on infrastructure improvements and transportation policies (see Allen and Arkolakis,
2022, Tsivanidis, 2022, Herzog, 2022). Carstensen et al. (2022) model the residential and
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work location choices and how they are affected by a distance-based commuting cost in a
dynamic framework. While our model is very different from these general spatial equilibrium
models, some results from our paper could be useful for this literature to account for traffic
condition adjustments.

2 A structural model of transportation decisions and
traffic conditions

We develop an equilibrium model representing individual choice of a transportation mode and
departure time. The model considers that car trip durations are endogenous and depend on
the congestion levels on the roads which is directly related on the number of drivers and how
long they spend on the road. We approximate this by the number of kilometers individuals
drive at each time period. To represent the relationship between speed and traffic density, we
model road congestion technologies for different metropolitan areas. Finally, we describe how
to solve for the equilibrium of the model and check whether the equilibrium is unique.

2.1 Transportation mode choice model

First, we introduce the structural model representing how individuals decide which trans-
portation mode to use and their departure time. We consider that the origin and destination
of the trips are fixed and exogenous. We do not allow for an outside option, as we model the
choice of individuals facing non-avoidable trips. We make the simplification that individuals
choose between T periods denoted by 1, ..., T . Our model is a nested discrete choice model,
and we follow the standard distributional assumptions from the literature (see, Train, 2009).
The nests are the different transportation modes. We assume individuals make a sequential
decision: first, they choose a transportation mode, and then they decide when they leave.
The consequence of this modeling assumption is that we allow individuals to have correlated
preference shocks for the same transportation mode across departure periods. The utility
function of an individual n associated with transportation mode j, and departure time t is
assumed to be linear in the mode and departure period characteristics Xnjt (which include
the trip cost, trip duration and mode and period specific intercepts):

unjt = β′nXnjt + εnjt.

βn is a vector of coefficients of preferences for these variables for consumer n, and εnjt is a
random idiosyncratic term. This assumption implies that the different modes and departure
periods are imperfect substitutes. We allow for correlation between these idiosyncratic terms
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across different periods by decomposing the preference shocks into a mode-specific shock
common to all departure periods and a mode and period-specific shock:

εnjt = ζnj + σε̃njt.

σ represents the degree of independence between the preference shocks across different periods
for the same transportation mode and is a parameter to estimate. When σ = 1, the preference
shocks for different periods are independent, while if σ = 0, the different time periods are
perfect substitutes. We assume that the period-specific preference shocks share the same
correlation coefficient. Distant periods might be less substitutable than closer ones; our
model captures this through the mode and period-specific constants that should be more
similar. Each individual has a choice set Jn, which comprises all transportation modes she
can access. Each individual chooses the combination of alternative j∗ and departure time t∗

that maximizes their utility:

{j∗, t∗} = arg max
j∈Jn,t∈{1,...,T}

unjt.

We assume that εnjt are identically and independently distributed across individuals and
follow a type one extreme value distribution. We further assume that the preference shocks
are uncorrelated to the mode and period observed characteristics:

E(εnjt|Xnjt) = 0.

The probability that individual n chooses the transportation mode j and departure time t is:

snjt =
exp

(
β′

nXnjt

σ

)
D1−σ
nj

∑
j′∈Jn

Dσ
nj′
,

where Dnj′ = ∑T
t=1 exp

(
β′

nXnj′t

σ

)
. In our data, we observe a sample of N individuals, who

are representative of the entire population in the metropolitan area using the individual
weights. By aggregating the transportation mode decisions of all individuals, we obtain the
total number of individuals using transportation mode j at period t as:

Njt =
N∑
n=1

ωnsnjt,
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where ωn is the weight of individual n in the sample. We can also obtain the total number of
kilometers driven in a given period as:

Kt =
N∑
n=1

ωnknsnt,car.

For the estimation, we further parameterize the individual heterogeneity in preferences and
assume that βn are functions of observable demographics characteristics Zn:

βn = β̄ + ZnΓ

We estimate
(
β̄,Γ, σ

)
using the method of maximum likelihood; we want to find the values of

the parameters that rationalize the best the observed choices given the theoretical probabilities.
The log-likelihood function that we maximize is:

LL(β̄,Γ, σ) =
N∑
n=1

∑
j∈Jn,t∈{1,...,T}

ωndnjt × log
(
snjt(β̄,Γ, σ)

)
, (1)

where dnjt is an indicator equal to one when the transportation mode j and time t are
chosen and zero otherwise. ωn corresponds to the sample weight of the individual n. The
identification of the parameters comes from observing a cross-section of individuals who have
different choice sets, different trip characteristics, and different demographic characteristics.

2.2 Road traffic conditions and congestion technology

We model congestion technology at the local level, splitting the city in a = 1, ..., A mutually
exclusive areas. The driving speed in an area depends on the road technology and the traffic
density in that area only. Following the transportation literature, we base our congestion
technology model on the fundamental traffic diagram (see Small et al., 2007). We model speed
as a weakly decreasing function of the traffic density, represented by the occupancy rate that
traffic monitoring stations typically record. The occupancy rate is defined as the percentage
of a fixed period during which the traffic sensor detects a car. Geroliminis and Daganzo
(2008) empirically show the existence of a fundamental traffic diagram at the city level, called
a “macroscopic fundamental traffic diagram”. Other applications include Yang et al. (2020),
Couture et al. (2018), and Anderson and Davis (2020). We follow their approach but allow
for heterogeneity within the city by considering area-specific congestion technologies. We also
rely on minimal functional form assumptions by approximating the function by polynomials.

Congestion levels can be different throughout the day, but we consider that road technology
is fixed over time. Road technology represents all the elements that determine the speed
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at which individuals can drive for a given traffic density. It represents the type of road
(high-speed road or city road), the presence of traffic lights and intersections, and the number
of entries or exits that may force drivers to slow down. Formally, we define the speed in area
a at time t, vat to be a function of the occupancy rate τat :

vat = fa(τat )

fa represents the congestion technology, which indicates how the speed decreases when the
number of cars increases. For the estimation, we consider that the observations contain speed
shocks such that:

vat = fa(τat ) + νat .

We assume that the speed shocks are exogenous and uncorrelated to the traffic level τat .
We make minimal function form assumptions on fa by relying on basis polynomial. More
specifically, we use Bernstein basis polynomials. We observe a sample of independent
realizations of traffic densities and speeds and estimate the following equation:

vat =
L∑
l=0

calBl(τat ) + νat .

The coefficients cal are the parameters of interest, and Bl are the Bernstein basis polynomials
of degree L, which expressions are:

Bl(T ) =
(
L

l

)
T l(1− T )L−l.

Under the assumption that the occupancy rate τat is independent of the speed shock νat , we
can estimate the parameters of the Bernstein polynomial cal using standard linear methods.

The congestion technology model determines speeds from the traffic occupancy rates,
while the transportation mode choice model predicts the number of cars and the number of
kilometers driven by area. We thus need to map the number of kilometers predicted by the
transportation mode choice model and the average occupancy rate in each area. Because
the traffic level depends on how many individuals choose to drive and how long they drive,
we consider a mapping between the total number of kilometers driven and the occupancy
rate. We assume an affine relation between the occupancy rate and the total number of
kilometers driven at the area level. Because we do not model the entire traffic source, we let
the possibility that a fraction of the road traffic is irreducible (trucks, delivery cars, buses,
etc...). Formally, we consider:
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τat = φat ×Ka
t + γat ,

where φat is a scale parameter that maps the number of kilometers driven to the surface of
the area, and γat represents the irreducible traffic.

2.3 Equilibrium of the model

In this model, an equilibrium is defined by individual probabilities to drive at each period
and speeds for each area and period. Then, we substitute the individual probabilities in
the speed function to express the equilibrium in terms of speeds only and get the following
system of non-linear equations:

vat = fa
(
φat

N∑
n=1

ωn.snt(v).kan + γat

)

There is no general result that guarantees that the system of non-linear equations always
has a unique solution. However, there are two special cases where the speed equilibrium
is unique. The first particular case is when there is only one period and one area, so we
have just a non-linear equation to solve. Because the speed function fa is monotonically
decreasing, we are sure that if a speed equilibrium exists, it is unique. The second particular
case is when we have one area and multiple periods. The proof relies on the fact that the
Jacobian of the system of equations has positive terms on the diagonal and negative terms
off-diagonal. The property of the Jacobian of the system of equations is the consequence of
two key features of our model: the speed function is decreasing, and the different departure
periods are substitutes. We provide the proofs of uniqueness under these two particular cases
in Appendix A.1. Even though there is no proof of the uniqueness of the equilibrium, we
provide a method to check if the system of equations in speeds has a unique solution given
our set of estimated parameters. The approach consists of defining the function:

gat (v, κ) = κ.vat + (1− κ).fa(v)

and check whether there exists κ ∈ [0, 1[ such that g(.) =
(
g1

1 · · · g1
T · · · gA1 · · · gAT

)′
is a

contraction. Recall that a function g(.) is a contraction if it is K-Lipschitz, with K<1,
implying that ∀v ∈ [v,v]:

||g(v′)− g(v)|| ≤ K||v′ − v||.
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We use the supremum norm, so the Lipschitz coefficient K is given by:

max
a∈1,...A

max
t∈1,...,T

max
a′∈1,...A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
Suppose we can find κ ∈ [0, 1[ such that K < 1, the function g(.) is a contraction. Therefore, if
the iteration process converges, it converges to the unique solution of the system of equations.
If there exists a set of κ such that the function g(.) is K-Lipschitz with K < 1, then we
select the value of κ that implies the lowest coefficient K to ensure the maximum speed of
convergence. Therefore, we solve for:

min
κ∈[0,1[

max
a∈1,...A

max
t∈1,...,T

max
a′∈1,...A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
We provide in Appendix A.2 the analytical formula for the Jacobian of g(.), and in Appendix

C.4 some results on how the Lipschitz coefficient varies with the tuning parameter κ and the
policy environment.

3 Specification and estimation of the transportation
choice model

We estimate the transportation choice model parameters using a combination of two main
datasets. We rely on survey data on individual commuting patterns in the Paris area called
“Enquête Globale Transport 2010” (EGT hereafter). It is combined with a second self-
constructed dataset on expected trip durations and itineraries for cars and public transport
from TomTom and Google Maps APIs. We also leverage several ancillary datasets to comple-
ment the information on the different transportation modes and individual characteristics.
We present all the sources for the data in Appendix B.1.

3.1 Data, sample selection and choice set characteristics

The EGT data contain information about departure times, precise locations, transportation
mode for every trip, and trip motives. In addition, the survey records household and individual
socio-demographic characteristics such as age, socio-professional activity, household size,
income class, and housing characteristics. We model the choice of transportation mode and
departure period for the morning commute, and consider two time periods: peak and off-peak
hours. We assume individuals choose only one mode of transportation. If individuals take
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multiple modes, we keep the one reported as the primary mode.4 To focus on transportation
decisions that are non-avoidable, we restrict the sample to trips related to work or study
motives. However, we still cover a large share of transportation decisions as non-avoidable
trips represent 73.1% of the total distance traveled between 7:00-8:59 a.m. and 69.5% for the
period between 6:00-6:59 a.m. and 9:00-9:59 a.m. We pick the individual as the observation
unit rather than the household, assuming that individual decisions are independent within
families; individuals from the same home still share access to the same transportation modes
and household demographic characteristics. This assumption implies that two people can
take the same car to make their respective trips; in this case, we consider two vehicles are on
the road. 5 While this simplification ignores potential cost savings and detours associated
with carpooling, modeling such joint decisions would add too much complexity to the model.
We consider five transportation mode alternatives: bicycle, public transport, two-wheeled
motor vehicles (motorcycle), walking, and car.6 If the household does not own a car or a
motorcycle, the alternative is considered unavailable for the individual. If walking or biking
takes more than 2.5 hours, we also define those alternatives as unavailable. If Google Maps
cannot provide a public transport itinerary, we consider the option unavailable (this occurs for
28.5% of the sample). We obtain a final sample of 12,975 individual trips. With the sample
weights, we have transportation decisions representing 4,034,801 individuals, corresponding to
approximately one-third of the total population of the Paris metropolitan area (11.9 million
inhabitants in 2011). Our entire analysis uses the survey weights to provide results for the
professionals and students from kindergarten in the Paris metropolitan area.

Since the EGT data only provide trip durations for chosen transportation modes, we must
rely on additional data to compute travel times. For consistency across alternatives, we
ignore self-reported trip durations. Instead, we consider travel times that we generate for
chosen and non-chosen transportation modes. We use Google Maps API to provide expected
trip durations and itineraries by public transport and use TomTom API for expected driving
times. We specify the trip query to a future date, so the predictions are not subject to
the current traffic conditions and their idiosyncrasies. The predictions nevertheless rely on
the expected traffic level to predict car trip durations. We thus use the predicted car trip
durations at 8:30 a.m. for peak hours and 6:30 a.m. for off-peak hours. We provide more
details about the queries in Appendix B.1. To estimate durations for walk and bicycle trips,
we obtain the trip distances from the walking route itinerary given by Open Source Routing

4Only 8.2% of public transport trips also used a car, and less than 1% a bicycle or motorcycle.
5In our sample, only 6.7% of the individuals report using a car as a passenger.
6Recent literature highlights the role of ridesharing and taxis on congestion levels (Rosaia, 2020 and

Mangrum and Molnar, 2020). For the EGT survey period, ridesharing is not an available alternative.
Furthermore, only 0.17% of the trips were done using a taxi, which is why we ignore the alternative.
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Machine.7 Then, we compute the average speed for individuals who bike and walk using
their declared trip durations and the distance. We find a walking speed of 5.52 km/hr and
10.23 km/hr for biking.8 The average speeds and the recovered distances are then used to
compute trip durations for the two modes. Finally, we use the predicted car durations at
off-peak hours for motorcycles, assuming they can bypass traffic.

The EGT data contains information on some characteristics of cars and motorcycles. Using
additional data, we estimate the fuel consumption per kilometer driven and the emissions for
the vehicles from these characteristics (see Appendix B.2). Fuel consumption is essential to
estimate the cost of driving, while the emissions are helpful in the counterfactual simulations
to predict the environmental policy effects. The survey also records whether individuals own
a public transport pass, the type of subscription and if they are partly or entirely reimbursed
for their trip. Using this information and additional assumptions, we estimate the costs for
each available transportation mode for all individuals. We construct cost estimates consistent
with marginal costs rather than average costs. Thus, we ignore fixed costs such as the cost
of the car, annual insurance, or parking. Following Hang et al. (2016), we do not include
vehicle depreciation in our cost estimates either. Finally, we assume biking costs are zero
when individuals own a bicycle. Otherwise, we attribute the price of a bike sharing ticket
(e1.7). Our final cost estimates are trip and individual-specific and account for differences
in the public transportation subscriptions, vehicle characteristics, and trip distances. We
provide the precise methodology and related assumptions to estimate the costs in Appendix
B.3.

We construct a measure of overcrowding for all the subway and urban railway transit
lines to capture the potential disutility of overcrowding in public railway transport. We use
publicly available data from 2015 on passenger flows (the oldest year available) combined with
data on hourly public transit schedules and train capacities. A train’s capacity is the number
of passengers in a train for a density of four persons per square meter. We approximate the
overcrowding level by the ratio between the hourly number of passengers divided by the line’s
capacity. This variable reflects the time heterogeneity in train passenger flow, schedules, and
capacities. From the urban railway line-level overcrowding estimates, we obtain individual
overcrowding levels by weighting the line-level overcrowding measures by the percentage of
the trip duration spent on the line. We provide details on the data used and the construction
of the overcrowding variable in Appendix B.4. On average, we find that the public railway
transport is at 89% capacity at off-peak hours and reaches 143% at peak hours.

7Source: http://project-osrm.org/
8We check that the speeds are not sensitive to rounding errors in the reported trip durations by excluding

observations reporting a multiple of 5 minutes and the average speeds remain very similar.
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The survey only provides household income brackets, dividing the full income distribution
in ten brackets. We prefer to construct our own proxy of household wealth by leveraging
precise housing size and location information. We estimate the real estate value per square
meter in each household’s neighborhood using estate transaction data from the French tax
authority. The real estate prices are estimated using all transactions in the municipality and
the neighboring municipalities and weighting each match by the inverse of the distance to
the household’s location. We then multiply this estimate by the apartment or house size
observed in the EGT data. Finally, we divide our estimated household wealth by the number
of consumption units in the household. According to the French Statistical Institute (INSEE),
the first individual in a household represents one consumption unit, other adults represent
half a consumption unit, and children represent 0.3 consumption units. We provide more
details about the data and estimates in Appendix B.5. We find a correlation coefficient of
0.51 between our income proxy and the midpoints of the income bracket provided by the
EGT data.

Table 1: Summary statistics by demographic groups.
Mean Mode shares

Freq. Distance Duration Car Peak/ PT Peak/
car chosen PT chosen

Age
Age ≤ 18 25.4 4.21 18.9 21.3 93.7 31.8 81.7
Age ∈ ]18- 25] 10.8 14.8 38.9 20.6 57.4 68.9 62.5
Age ∈ ]25- 35] 17.8 15.5 35 36.7 57.6 52.7 66.6
Age ∈ ]35- 45] 19.4 17 35.6 45.7 57.9 43.2 62.1
Age ∈ ]45- 60] 24 16.5 34.9 45.3 63.5 43.9 65.9
Age > 60 2.56 13.4 30 49.9 56.1 39.7 64.6
Wealth proxy
Wealth ≤ 110,000 20 14.6 32.8 36.7 57 41.3 58.3
Wealth ∈ ]110,000-152,000] 20 14.9 33.2 39.5 65.1 42.7 64.8
Wealth ∈ ]152,000-205,000] 20 13.4 31.8 37.2 65.3 44 69.7
Wealth ∈ ]205,000-283,000] 20 12 30.2 33.7 68.4 47.7 71.1
Wealth > 283,000 20 10.1 28.5 28.8 70.8 48.6 72.7
Socio-professional category
Independent 3.58 17 30.5 59.5 51.8 24.4 61
White collar 33.3 15.9 35.2 39.3 70.5 49.6 74.5
Blue collar 30.6 16.4 35.3 44.5 50.2 45.2 54.4
Student ≤ high school 25.6 4.09 18.8 21.6 93.3 31.5 82.8
Student - higher education 6.86 15.1 41.9 11.7 68.1 80.4 58.8
Household size
Couple and/or children 84 13.1 31.2 35.6 65.9 42.9 68.6
Single 16 12.7 32.2 32.9 60.2 55.1 63.8
Average 13 31.3 35.2 65 44.8 67.6
Note: Durations in minutes, distances in km, wealth in e per household consumption unit. Frequencies and mode
shares are in %. Distance and duration are those of the chosen transportation modes.

Table 1 shows the distribution of trip characteristics and mode shares across the different
demographic categories. We see that the youngest category (younger than 18 years old)
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have, on average, trip distances three to four times lower than the rest of the population.
The explanation is the proximity of schools to their residences. We do not observe large
differences in car usage for the first three wealth quintiles. Instead, there is considerably lower
usage for the top two quintiles. We see that the share of individuals using public transport
and traveling at peak hours increases with wealth. While the share of white-collar workers
using their car differs by 5.2 percentage points from the share of blue-collar workers, the
percentage of white-collar workers driving at peak hours is 19.7 percentage points higher
than for blue-collar workers. We take this as evidence of differences in schedule flexibility
across socio-professional categories. Mode availability, as well as the distribution of durations
and costs by mode, are given in Appendix B.6.

3.2 Model specification and estimation results

We specify the utility as a linear function of the following variables: transportation mode-
specific intercepts, the trip’s monetary cost, and the logarithm of the trip duration. Only
differences in utilities are identified in these discrete choice models, so we consider walking as
the baseline option and normalize the intercept to 0. Note that the mean utility of walking is
not normalized to 0 because the utility contains the trip duration. We use the logarithm of
the trip duration since it implies that the marginal valuation of travel time decreases with
the trip duration: spending one additional minute is more harmful to someone taking a short
trip than to someone with a longer trip time. We test in robustness the sensitivity of the
results to this specification assumption. We allow the sensitivity to the trip duration to
vary with age (we rely on six age classes) and wealth (we rely on the quintiles of our wealth
proxy). The trip duration might be differently valued if individuals have to make a physical
effort or if they can use their time to read or listen to the radio. To capture this, we add an
interaction between a dummy for walking and bicycle and the trip duration in the utility
function. While we allow for heterogeneity in the sensitivity to the trip duration, we do
not allow heterogeneity in the cost sensitivity. We choose to put all the heterogeneity on
the sensitivity to the duration for two reasons. First, the trip durations are fairly precisely
measured, while the trip cost estimates rely on several assumptions and imputations. Second,
the costs display much less variation across modes and individuals than trip durations. We
also test this restriction in a robustness exercise.

Individuals may have different schedule flexibility. Workers in some specific professional
activities and young students may have less departure time flexibility. Therefore, we interact
the socio-professional category with a dummy for off-peak hours. Families typically try to
coordinate departure times and may be less flexible, so we also add an interaction between
an indicator for families and off-peak hours.
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Additionally, we add some controls to represent the characteristics of public transport. We
use the overcrowding level in the metro and suburb trains, a dummy if the public transport
itinerary relies on the railway system only (instead of using the bus or tramway), and the
number of layovers. Following the literature on public transport congestion, such as De Palma
et al. (2017) and Haywood and Koning (2015), we assume the utility is linear in the level of
overcrowding in the public transit.

Table 2: Estimation results for the utility parameters
Coefficients Mean S.E.
Log(duration) -0.56∗∗ 0.09
Log(duration) × wealth ∈ q2 -0.05 0.08
Log(duration) × wealth ∈ q3 -0.01 0.08
Log(duration) × wealth ∈ q4 -0.11 0.08
Log(duration) × wealth ∈ q5 0.15† 0.09
Log(duration) × age ∈ ]18-25] -0.4∗∗ 0.1
Log(duration) × age ∈ ]25-35] -1.59∗∗ 0.09
Log(duration) × age ∈ ]35-45] -1.7∗∗ 0.08
Log(duration) × age ∈ ]45-60] -1.45∗∗ 0.08
Log(duration) × age > 60 -2.03∗∗ 0.2
Log(duration) × effort -1.66∗∗ 0.06
Cost -0.41∗∗ 0.02
Bicycle -3.48∗∗ 0.08
Public transport, peak -4.2∗∗ 0.21
Public transport, off-peak -4.49∗∗ 0.23
Motorcycle -7.35∗∗ 0.21
Car, peak -6.22∗∗ 0.2
Car, off-peak -6.81∗∗ 0.22
Off-peak hour × white collar -0.57∗∗ 0.09
Off-peak hour × blue collar 0.16† 0.08
Off-peak hour × student ≤ high school -0.98∗∗ 0.12
Off-peak hour × student > high school 0.01 0.1
Off-peak hour × family -0.08† 0.04
No. layovers in public transport -0.35∗∗ 0.04
Railway only 0.05 0.06
Public transport overcrowding -0.06∗∗ 0.02
σ 0.79∗∗ 0.06
No. observations 12,975
Log-likelihood -13,624
Notes: Walk is the baseline alternative. The reference categories are individuals
with age < 18, the first wealth quintile and independent workers. Duration
measured in minutes. Cost in e. Significance levels: ∗∗: 1%, ∗: 5%, †: 10%.

We estimate the transportation choice model by maximizing the log-likelihood defined
by Equation (1). The estimated coefficients, presented in Table 2, have the expected signs.
Individuals value negatively the cost of the trip as well as its duration. The interactions
between the trip duration and individual characteristics reveal that the sensitivity to trip
duration is more heterogeneous across age than across income categories. Older individuals
are more sensitive to trip duration. But sensitivities to trip duration are not so different for
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individuals between 25 and 60 years old. Sensitivity to trip duration depends non-linearly on
wealth: it increases until the 4th quintile and then decreases for the highest quintile. However,
the coefficients in the first four quintiles are not significantly different. It reveals that the
top-wealth individuals are less sensitive to trip durations than lower-wealth categories.

The transportation mode dummies reveal significant differences in the stand-alone pref-
erences for different transportation alternatives. We also find that driving a car or taking
public transport at peak hours are preferred to using these modes at off-peak hours. The
value of the nest parameter is high (0.79), indicating that leaving at peak and off-peak hours
are subject to relatively independent shocks and thus constitute imperfect substitutes. Yet,
the coefficient is lower than one, implying a slight correlation between the preference shocks
within transportation modes. The value of the nest parameter also confirms the relevance
of the nest to represent substitution patterns between different transportation modes and
departure times.

The interactions between the off-peak hour dummy and the socio-professional categories
reveal that white-collar workers and young students are less flexible than the other categories.
The most flexible individuals are the blue-collar workers, students in higher education, and
independent workers. We also find that families dislike traveling outside peak hours, indicating
lower schedule flexibility. Finally, the public transport controls have the expected signs: the
number of layovers and the overcrowding reduce the utility of public transport. The railway
dummy is positive but not significant.

We test the sensitivity of our estimation results to alternative model assumptions. All the
robustness checks and the results are presented and discussed in Appendix C.1. To account
for the possible role of unobservables correlated with the trip’s duration, we check that adding
weather variables or a measurement of travel time reliability as controls do not affect our
estimates. We also estimate models with random coefficients on the duration, trip cost, or
the off-peak hour dummy. We consider a model where car depreciation is included in the
trip’s cost, and also check how sensitive the results are to the choice of a functional form
for the duration. We also provide the estimates when we rely on different car trip duration
predictions at off-peak hours. We explore a model with two different off-peak hour periods
(off-peak hours early and off-peak hours late) and a model with a different nesting structure.
Finally, we check that our estimates are not very sensitive to the choice set availability
assumptions.
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3.3 Values of travel time and substitution across modes and peri-
ods

With these parameters, we compute individuals’ values of travel time (or opportunity cost of
time) in e/hr. The value of travel time represents how much an individual should receive (in
e) to compensate for the decrease in utility related to an increase in travel time by an hour.
Formally the VOT for individual n is:

VOTn = βduration
n

α
× 1

durationn
,

where α is the sensitivity to the trip monetary cost. Because we specify the utility as a
function of the logarithm of the duration, the marginal utility of duration depends on the
trip duration. We, therefore, calculate the values of travel times associated with the chosen
transportation modes and departure periods.

Table 3 presents detailed information about the distribution of the value of time across
individuals. We obtain an average value of travel time of e15.9/hr which is higher than the
median value of only e10.3/hr. We observe substantial heterogeneity in how individuals
value their time in transport, reflected by the extreme minimum and maximum opportunity
costs of time (e0.44/hr and e389/hr). However, the maximal value is an outlier since the
99th percentile of the distribution is much more reasonable (e81/hr). The mean value of
travel time is in line with a recent study by Buchholz et al. (2020) that estimates an average
value of time of $13.5/hr on a sample of cab riders in Prague. Our results are consistent with
Parry and Small (2009) who estimate the mean valuation of travel time to be close to half
the average hourly wage in London and Washington D.C. Our mean value represents 67%
of the mean wage in 2012 in the Paris metropolitan area (e23.9/hr).9 This is close to the
ratio found by Goldszmidt et al. (2020) (75%) using natural field experiments on 13 U.S.
cities. Our mean value of travel time is also consistent with Kilani et al. (2012), who estimate
an average of e17/hr for a working father in Paris. Indeed, our estimate is for the whole
population, and we expect working fathers to have higher opportunity costs of travel time
than average. We show in Figure 6 of Appendix C.2 the distribution of VOT as function of
age and income.

9Source for the average hourly wage in Paris: https://www.lemonde.fr/les-decodeurs/article/2016/
11/28/en-ile-de-france-le-salaire-horaire-depasse-de-41-celui-des-autres-regions_5039717
_4355770.html.
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Table 3: Distribution of the values of travel time.
Min p1% Mean Median p99% Max
0.44 1.34 15.9 10.3 81.1 389
Notes: in e/hr.

To better understand the substitution across departure periods for driving, we compute
the own and cross elasticities to duration. We also calculate the own and cross elasticities to
the car trip cost to put the values in perspective. Appendix C.2 gives the main statistics of
their distributions. Results show large heterogeneity across individuals and lower elasticites
at peak hour on average.

4 Estimation of the road traffic congestion technologies

4.1 Data and sample selection

We split the Paris area into five zones: the city center, the ring roads, the close suburb, the far
suburb, and the main highways that connect the city center to the suburb. We estimate the
congestion technology for three areas: the city center, ring roads, and highways. Because of
data limitations, we cannot estimate the congestion technology for the suburbs. However, we
still allow for adjustment of the equilibrium speeds in the close and far suburbs by assuming
the same congestion technology as in the city center. To estimate the three road congestion
technologies, we rely on hourly data on traffic conditions from road traffic sensors for 2016
and 2017. We provide more information about the data in Appendix C.3.1.

The traffic sensors typically record four variables: the traffic flow (in vehicles per hour),
the traffic density (in vehicles per kilometer), the occupancy rate, i.e., the percentage of time
during which the sensor detects a car (in percentage per hour), and the speed (in km/hr).
The traffic flow, traffic density, and speed are related through the fundamental equation of
traffic flow:

traffic flow = speed× traffic density.

And the traffic density and occupancy rate are related through:

traffic density = occupancy rate
mean effective car length × no. lanes.

The mean effective car length represents the length of the car plus the space between two
vehicles. The data on the highways contain the four main traffic variables but the data
from the city center and the ring roads do not record speeds. We thus use the fundamental
equation above to estimate the speeds. We provide more details and explain how we construct
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the final sample to estimate the congestion technology in Appendix C.3.1. Our final sample
contains 1.9 million hourly observations for the ring roads recorded from 118 stations. We
have 599 measurement stations recording 8 million observations for the city center.

Table 4: Road traffic conditions by area.
Peak Off-peak All sample

Area Mean Mean Mean Median Std. dev.
Speed Highways 44.9 67 86 91 25.6

City center 22.4 31.7 38.1 31.8 24.9
Ring roads 30.4 57.9 56.3 61.1 21.3

Occupancy Highways 23.4 14.1 7.92 5.84 7.67
City center 17.2 6.17 6.04 3.75 7.52
Ring roads 33.5 15.3 15.4 12.3 11.6

Note: Speed is in km/hr, and occupancy rate is in %. Averages at peak and off-peak hours are
computed over workdays, excluding school and public holidays, and weighted by the average traffic
flow of the traffic sensor. Peak hour is between 8:00 and 8:59 a.m., and off-peak hour is between
6:00 and 6:59 a.m.

Table 4 provides the summary statistics for the speeds and occupancy rates in the different
areas. We observe significant heterogeneity across areas, suggesting that our partition is
relevant. Speeds at peak and off-peak hours are significantly different, supporting our
differentiation across periods. In addition to providing evidence of heterogeneity across areas,
the traffic speeds and occupancy rates are highly variable; we leverage these variations to
estimate flexible road congestion technologies.

4.2 Estimates of the congestion technologies

We use the observations on speed and occupancy rate to estimate the congestion technologies
fa in each area a. We approximate them by Bernstein polynomials of degree seven and impose
the constraint that the functions are weakly decreasing when estimating the coefficients of
the polynomials (ca0, ..., ca7)a=1,...,A.10 The identification of the relationship between speed and
traffic comes from the local variation in traffic conditions in the data. We exploit several
dimensions of variation between observations in the traffic data. First, we expect different
hours to have heterogeneous traffic levels: traffic should be heavier at peak hours in the
morning and evening. Second, traffic conditions are presumably variable across weekdays,
weekends, public holidays, and school holidays. In addition, we observe data for different
roads within an area that may also have different traffic conditions. We provide the fits of
the models for each area in Appendix C.3.2.

10The constraints are: ca
l ≥ 0 ∀l and ca

l+1 ≤ ca
l ∀l = 0, ..., L− 1.
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Figure 1: Estimated congestion technologies and initial traffic conditions.
Note: Initial conditions are average speeds at peak and off-peak hours from TomTom predicted durations.

As Figure 1 shows, the estimated values of the maximal speeds are very much in line with
the maximum speed limits in each area. We estimate it to be 99.8 km/hr for highways
compared to speed limits that vary between 90 and 130 km/hr depending on the road and the
location. The speed limit is typically 70 km/hr on the ring roads, very close to our estimate
of 71.6 km/hr. Lastly, the speed limit was usually between 30 and 50 km/hr in the city
center at that period, but individuals may not always comply with the speed limit. Therefore,
our estimate of 53.8 km/hr shows high consistency again. Our congestion technologies show
heterogeneity across the city areas. We have a high speed for low occupancy rates on highways,
but it becomes slower than any other area for high congestion levels. This can be explained
by the role of interchanges, entries, and exits on highways, which may slow down driving
speeds quickly when the traffic increases. This implies a critical difference of 20.2 km/hr in
speeds between peak and off-peak hours. The congestion curve for ring roads remains flat
initially: the slope remains higher than -0.3 until an occupancy rate of 4.2%. In contrast, the
speed in the city center displays a convex relation, with speeds decreasing faster for lower
occupancy rates than for larger ones. Overall, our estimates reject the assumption of a single,
city-wide, congestion technology and show that the congestion technologies do not follow
simple functional forms.

Our estimates could suffer from an endogeneity bias if the same unobserved shocks affect
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the occupancy rate and speed. We do two sensitivity analyses adding additional controls to
decrease the propensity to have common unobserved shocks. First, we exclude observations
with extreme weather. Second, we estimate congestion technologies that are allowed to be
heterogeneous across traffic measurement stations, hours of the day, days of the week, or dates.
We discuss the underlying assumptions behind these robustness checks and their results in
Figures 9 and 10 in Appendix C.3.2. Our benchmark estimated congestion technologies are
not systematically higher or lower when we estimate different specifications or use restricted
samples, suggesting that we do not have biases.

4.3 Mapping between individual decisions and initial traffic con-
ditions

Our transportation mode choice model predicts the individual probabilities of driving at peak
and off-peak hours given car trip durations. We have considered that car trips are fixed and
observed for the estimation. In our equilibrium model, however, car trip durations depend on
the speeds and distances in each area. More specifically, the car trip duration for individual
n at period t is given by:

durationnt =
A∑
a=1

kan
vat
× εnt.

kan represents individual n’s distance in area a and vat is the speed. Note that if the itinerary
of an individual does not include an area, distance is set to 0. εnt represents an individual and
period-specific multiplicative speed shock, which constitutes another structural parameter
of our model. It captures individual-specific unobserved trip characteristics that make an
individual average speed lower or higher than the average. We assume these shocks are
exogenous to the traffic conditions and hold them constant when we simulate new traffic
equilibria. We take the logarithm of the previous equation and estimate the inverse of the
initial speeds 1

va
t
and recover the individual speed shocks ε̃nt (they are the residuals). We

estimate the speeds for each period separately using trip durations from TomTom and trip
distances using the non-linear least squares method:

log(durationnt) = log
(

A∑
a=1

kan
vat

)
+ ε̃nt.

The estimated speeds are provided in Table 5. Speeds are always higher at off-peak hours
than peak hours. They are also much higher on the highways, then on the ring roads and
far suburb and finally in the city center and the close suburb. These estimated speeds also
reveal that the difference in speeds between peak and off-peak hours is very similar for the
city center and the close suburb, which is consistent with our assumption that these two
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areas share the same congestion technology.

Table 5: Estimated average speeds from TomTom data.
Peak hours Off-peak hours

Area Average speed Std. errors Average speed Std. errors
Highways 65 0.849 85.8 0.975
City center 13.8 0.137 18.3 0.158
Ring roads 27.7 0.464 46.5 0.716
Close suburb 15.9 0.102 20.2 0.111
Far suburb 25.5 0.131 29.2 0.132
Note: Speeds in km/hr. Standard errors are computed using the delta-method from the estimates of the
inverse of speeds.

With these estimated initial speeds, we then back out the initial occupancy rates by
inverting the congestion technologies:

τat = (fa)−1 (vat ).

τat is unique since fa is decreasing in speed. Finally, we consider a mapping between the
number of individuals driving and the occupancy rate in each area and period. We assume
an affine relation between the occupancy rate, which is the argument of the speed function,
and the total number of kilometers driven. We choose to consider the number of kilometers
driven because the traffic depends on how many individuals decide to drive and how long
they drive. Formally, we consider:

τat = φat ×Ka
t + γat .

φat is a scale parameter representing the inverse of the size of the area while γat reflects
irreducible traffic or traffic that is not due to households (buses, delivery trucks, etc...). We
can only identify two parameters per area because we observe individual choices and speeds
for only two periods. We therefore impose that φat = φa and γat = γa. Instead, we could
impose some restrictions across areas and let the parameters vary with the period. But given
that the areas have very different sizes and may be subject to different levels of irreducible
traffic, our assumption seems more appropriate.

Using the initial occupancy rates and the predicted number of individuals in each area
given the initial speeds, we solve for φa and γa such that:

τat = φa ×Ka
t + γa.

With two linear equations and two unknowns we can find a unique pair of parameters for
each area. We further impose that the shares of irreducible traffic are between 0 and 60%
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and use the constrained least-squares method that minimizes the sum of square deviations
from the equations above. The calibrated parameters are presented in Table 6. We obtain
a rather large irreducible share of traffic in the close suburbs (21.6%) and the city center
(13.3%) while we estimate no irreducible traffic for highways and the ring roads. We provide
the comparison between observed and predicted transportation mode shares and speeds in
Appendix C.3.3 and obtain a good fit of the model.

Table 6: Calibrated parameters of the mapping between occupancy rates and driven distances.
Area Scale parameter Irreducible traffic % irreducible traffic

(φa×10,000) (γa) (γa/τapeak × 100)
Highways 0.024 0 0
City center 0.373 3.18 13.3
Ring roads 0.372 0 0
Close suburb 0.115 4.37 21.6
Far suburb 0.011 6 57.3
Notes: The share of irreducible traffic is in % of peak hour occupancy rates.

4.4 Check of the equilibrium uniqueness

We now apply the method developed in Section 2.3 to verify that our algorithm is a contraction.
Given the estimated model parameters, we check that the model has a unique equilibrium.
We compute the Lipschitz coefficients for values of the algorithm tuning parameter κ between
0 and 0.99. We solve for these coefficients at the equilibrium speeds without policy and under
the different policy environments that we consider in section 5. We compute:

max
a∈A

max
t∈T

max
a′∈A

max
t′∈T

∣∣∣∣∣∂gat (v∗, κ)
∂va

′
t′

∣∣∣∣∣ ,
where v∗ denotes the vector of equilibrium speeds. Panel (a) of Figure 2 shows several
interesting insights. When κ is very low, i.e. when we put a low weight on the previous speed
value, the algorithm is not a contraction. We also find that the policies do not modify the
Lipschitz coefficients of the algorithm. Finally, the variable toll policy requires the highest κ
to have a contraction. We also check for which values of the tuning parameters our algorithm
is a contraction in the entire set of possible speed values in their interval [v,v]. This time we
calculate:

max
a∈1,...,A

max
t∈1,...,T

max
a′∈1,...,A

max
t′∈1,...,T

max
v∈[v,v]

∣∣∣∣∣∂gat (v, κ)
∂va

′
t′

∣∣∣∣∣ .
Panel (b) of Figure 2 shows that there are values of κ < 1 for which the function is a
contraction on the entire space of the speeds. From κ = 0.53, the algorithm is a contraction.
This time, we find that the no-policy environment is associated with the smallest set of κ
that ensures our algorithm is a contraction. The lowest value of κ that corresponds to the
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lowest Lipschitz coefficients under the different policy environments is thus 0.65. We use this
value to solve the equilibrium speeds in the different counterfactual simulations.

Figure 2: Lipschitz coefficients at the equilibrium speed and for any speed.

0 0.2 0.4 0.6 0.8
Tuning parameter ( )

0

0.2

0.4

0.6

0.8

1

1.2

Li
ps

ch
itz

 c
oe

ffi
ci

en
t (

K
)

No policy
Driving restrictions
Uniform toll
Variable toll

(a) At the equilibrium speeds.
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(b) In the space of all possible speeds.

We show in Appendix C.4 that the number of iterations and the computation time needed
to solve the model for different values of κ in the no policy environment. We can see that they
increase exponentially with the tuning parameter. We obtain the highest speed for κ = 0.5.
However, the value we choose, κ = 0.65, multiplies the convergence time by only around 1.5.

4.5 Value of driving and marginal costs of congestion

First, we measure the value of driving at peak hours at the initial equilibrium speeds. If
individuals could not take their cars at peak hours, they incur a surplus loss of e2.56 million,
corresponding to 79 cents per trip for a potential driver.11 Second, we measure the value of
driving at peak hours under maximum speeds, given the irreducible portions of traffic in each
area. The improvements lead to a total surplus increase of e6.12 million, corresponding to
e1.90 per potential driver. The value of driving at peak hours at maximum speeds is 2.4
times that of driving at initial speeds, highlighting the detrimental effect of congestion in the
Paris metropolitan area. Congestion generates a total increase in travel time of 396 thousand
hours, equivalent to an average additional 7.4 minutes per driver, increasing the average trip
duration by 23.6%.

We define the marginal costs of congestion for an area, at a given period, as the total
surplus losses associated with one additional kilometer driven or an extra driver in that
area. For the case of the extra driver, we add the average number of kilometers driven by

11A potential driver is an individual who owns a car.
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an individual in that area. Adding one kilometer or a car marginally affects the area speed,
which in turn increases car trip durations by a small amount for everyone driving in that area.
Finally, we calculate the surplus variation from these marginal changes at the individual level.
The society marginal cost thus corresponds to the sum of all surplus variations.

Table 7 shows area-specific marginal costs for an additional kilometer between 2 and 53
cents. The highways and the far suburb have the lowest marginal costs. This is a consequence
of area size; one additional kilometer does not significantly impact the traffic density. Globally,
the costs associated with an additional driver are between 34 cents and e2.1. The initial
marginal costs are higher at peak hours than at off-peak hours. But the difference between
periods is highly heterogeneous across areas. The differences are small in the city center and
the suburbs. However, the highways exhibit a much larger difference; the marginal cost of
congestion per driver at peak hours is 2.7 times larger than at off-peak hours. The marginal
costs depend on two key model parameters. First, the slopes of the congestion technologies
are higher at peak hours than during off-peak hours in all areas. The second key parameters
are the marginal valuations of travel time. Since our utility specification is logarithmic in the
duration, and trip durations are higher at peak hours than at off-peak hours, the values of
travel time are higher at peak hours. Finally, we also compute a marginal cost of congestion
where we add an individual driving with the average itinerary (i.e., distance traveled in each
area) among individuals owning a car. The average costs are e2.97 at peak hours and e1.87
at off-peak hours.

The most appropriate way to compare our results to results in the literature is to use our
estimates of the marginal costs of congestion per kilometer. Making such a comparison puts
our congestion values close to Couture et al., 2018 (3.6 cents of $ for several U.S. cities), Akbar
and Duranton, 2017 ($10 cents for Bogota), and Yang et al., 2020 (3 yuan or approximately
e36 cents for Beijing).12

Table 7: Estimated initial marginal costs of congestion by area.
One kilometer One average driver

(in cents) (in e)
Area Peak Off-peak Peak Off-peak
Highways 7.63 1.7 1.14 0.415
City center 53.2 42 1.58 1.26
Ring roads 44.8 25 2.09 1.19
Close suburb 45.3 36 1.29 1.04
Far suburb 8.22 4.3 0.582 0.339
Average 2.97 1.87
Note: “Average” is the marginal cost for the average driver’s itinerary.

12We use the average 2014 CNY-EUR exchange rate from https://www.exchangerates.org.uk/CNY-EUR
-spot-exchange-rates-history-2014.html.
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5 Quantifying the welfare consequences of the regula-
tions

Using the transportation choice model and estimated road technologies, we study the welfare
effects of three policies: (1) driving restriction banning a fraction of cars randomly, (2) a
uniform toll, and (3) a variable toll linear in the trip’s distance. We only focus on policies
applicable at peak hours so that driving at off-peak hours is never constrained. Our model
predicts individual probabilities of choosing each transportation mode and the equilibrium
driving speeds at peak and off-peak hours in the five areas. Thus, we do not predict
counterfactual choices but individual choice probabilities, which we use to compute the
expected number of individuals choosing each transportation mode and departure period.

The estimated effects correspond to one trip per person for the entire population of
commuters in the Paris area. There are, on average, 253 working days annually and two
commuting trips per day, so we should roughly multiply the costs by 500 to convert them
into annual terms. Next, we measure the policies’ impacts on consumer surplus, tax revenue,
and emissions. We define two aggregate welfare measures. The first is the sum of the change
in consumer surplus and tax revenues, and the second also incorporates the benefits from
avoided emissions valued at standard levels. In Appendix D.1, we provide additional details
on how these welfare measures are defined, as well as the decomposition we use to separate
policy effect into a pure policy effect at constant speeds and an effect from speed changes.

To study the importance of accounting for speed adjustments to accurately predict the
transportation policies’ effects, we compare the outcomes predicted by our model against
those obtained under a simpler model with constant speeds. The comparison, provided in
Appendix D.2, illustrates the importance of considering the policies’ effects on congestion
levels and driving rates, as they influence substitution patterns between transportation modes
and departure periods.

5.1 Analysis of different policy levels

To properly compare the three policies at different stringency levels, we rely on the percentage
reduction of the total number of kilometers driven at peak hours. Figure 3 presents the surplus
losses, tax revenues, and welfare (excluding emissions) changes associated with the three
policies. The impact of the driving restriction on consumer surplus increases linearly with
the stringency level. The uniform toll has a concave relationship, while the variable toll has a
convex shape. This indicates large differences in how individuals react to a policy’s stringency
level. Increasing the price of a uniform toll has a lower marginal impact on individuals, while
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the effect increases in the case of a variable toll. The variable toll achieves the lowest surplus
losses across all stringency levels by targeting high-distance drivers. Panel (b) shows that
under both types of tolls, we obtain Laffer curves, and the total tax revenue decreases at
high toll values. We also note that the uniform toll is better at generating revenue than
the variable toll for almost all stringency levels, except for the highest. Nonetheless, the
variable toll remains the most efficient policy across stringency levels after redistributing the
tax revenue. As Panel (c) shows, the two types of tolls have positive welfare impacts for
moderate stringency levels after tax-revenue redistribution. Uniform (respectively variable)
tolls generate welfare gains for reductions in the driving distance below 35% (respectively
50%). These are policies with a uniform toll below e2.7 or a variable toll of e0.15/km.
The optimal uniform and variable tolls maximizing total welfare are e1.4 and 8 cents/km,
respectively. The optimal variable toll reduces traffic much more than the uniform toll (28.2%
against 18.2%). The welfare difference is however relatively small: the variable toll leads to
e33,000 higher gains than under the uniform toll.

Figure 3: Change in individual surplus, tax revenue and welfare.
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(a) Surplus losses.
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(b) Tax revenues.
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(c) Welfare losses (W2).

Figure 4 presents the aggregate surplus losses using distributional weights (the inverse
of wealth), the range of surplus losses (difference between maximum and minimum surplus
losses), and the difference in surplus variation between the top and bottom 10% of the
income distribution. Using distributional weights does not affect the policy ranking nor the
aggregate surplus loss magnitudes, as seen in Panel (a). However, Panel (b) highlights the
main disadvantage of the variable toll and its distributional impacts: while the uniform toll
and driving restrictions generate almost the same surplus difference, it is two times larger
under the variable toll. This result highlights how policymakers’ secondary objectives might
affect the choice of a policy instrument, as the variable toll generates the highest aggregate
surplus but also the largest inequalities.
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Figure 4: Change in distributional outcomes.
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(a) Surplus losses with distri-
butional weights.
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(b) Surplus loss range.
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(c) Difference in surplus loss
between the top and bottom
10% of the income distribu-
tion.

Figure 5 presents the costs associated with the different policy stringency levels. Panels (a)
and (b) show that the three policies have similar impacts on total emissions of equivalent
NOX and CO2, with the uniform the most effective policy and the driving restriction the
least effective. The differences across policies mainly come from differences in substitution
for driving at off-peak hours. The policies also discourage different individuals from driving,
affecting the composition of drivers and the total emissions. The variable toll generates the
most extensive substitution for driving at off-peak hours, limiting its impact on emissions.
In contrast, the uniform toll discourages short trips, which usually have better alternatives
outside cars. Panel (c) provides the average costs of the regulations. The average costs of
reducing emissions increase with the policy stringency under the two types of tolls: linearly
for the uniform toll, while the relationship is convex under a variable toll. In sharp contrast,
the cost function decreases with the policy stringency under driving restrictions, reflecting
that the welfare losses increase more slowly than the decrease in emissions. Price instruments
can have negative costs for low stringency levels, consistent with the net benefit we obtain
after the tax redistribution. We can find a more extensive set of policies with a negative
cost of reducing emissions under the variable toll despite being less effective at decreasing
emissions.
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Figure 5: Average cost of reducing emissions of local pollutants.
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(a) Eq-NOX emissions.
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(b) CO2 emissions.
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(c) Cost in e/ton eq-NOX.

5.2 Comparison across policies at a benchmark level

To further analyze the effects of the previous policy instruments, we set a benchmark policy
stringency level. We calibrate the road tolls to achieve the same traffic reduction at peak
hours as a driving restriction that bans individuals from driving with a probability of one-half.
This policy mimics one based on whether the last digit of the license plate is odd or even. The
equivalent uniform toll is e2.69 while the variable toll is 10 cents/km. All three regulations
reduce the number of kilometers driven by 34% at peak hours.13 With two trips per day,
the uniform toll implies a total cost of e5.4 per day, close to the London congestion charge
before 2007.14 The variable toll of e0.10/km implies an average cost of e1.43, lower than
the uniform toll. The maximum variable toll reaches e14.1 for the longest distance.

Impacts on consumer surplus Table 8 presents the policies’ impacts on consumer surplus.
The ranking of policies by surplus losses and welfare changes follows the results from the
previous section, and the policy costs are between e0.7 million and e1.5 million. As we
saw in the previous section, toll revenues are huge and cover 102% and 128% of the total
surplus loss for the uniform and variable tolls, respectively. If we redistribute the entire tax
revenue, the tolls generate benefits between e27,000 and e181,000. As long as the shadow
cost of public funds is below 75%, both tolls outperform the driving restriction policy, which
is very likely to be the case in reality. To better understand the role of the changes in speeds
induced by the different policies, we decompose the total variation in consumer surplus into
two terms: the variation in consumer surplus due to the policies keeping the speeds constant
and the changes in surplus induced by the modification of the equilibrium speeds. While

13An alternative benchmark would match the total distance driven at peak and off-peak hours across
policies. We would obtain slightly lower calibrated tolls.

14The London toll implemented in 2003 was initially £5/day and increased to £8 in 2005, £10 in 2011,
£11.5 in 2011, and £15 in 2020.
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speed improvements always create welfare gains, they are insufficient to offset the policy
welfare costs since they only cover between 13% and 34% of the aggregate surplus losses.

Across policies, there is a constant share of individuals with no change in their surplus.
These are individuals without a car who are not affected by the regulations. No individual
has surplus gains under a uniform toll. The driving restriction induces a tiny portion of
individuals to have positive surplus changes (around 3,000 individuals out of 4.03 million).
In contrast, 18.9% of the population is better off under a variable toll. The winners are those
with short trips and high valuations of time, which continue to drive at peak hours since
their toll is low. Among the winners, the average toll is e0.29 versus an average toll of e1.44
for all individuals holding a car.

Table 8: Consumer surplus variation under the benchmark policies.
Driving Uniform Variable

restriction toll toll
Total ∆CS (Me) -1.11 -1.49 -0.69

∆CS, constant speed (Me) -1.28 -1.69 -0.93
∆CS from speed (Me) 0.164 0.199 0.24

Total ∆wCS (Me) -1.16 -1.55 -0.752
Tax revenue (Me) 0 1.52 0.871
∆W1 = ∆CS + tax revenue (Me) -1.11 0.027 0.181
∆W2 = ∆CS + tax rev. - ∆E (Me) -1.09 0.064 0.212
% ∆CS = 0 20.3 20.3 20.3
% ∆CS > 0 0.075 0 18.9
% ∆CS < 0 79.7 79.7 60.8
Note: “∆E” are changes in emissions valued at standard levels.

Winners and losers We now characterize winners and losers by analyzing the surplus
changes by demographic groups based on age, wealth, socio-professional activity, family size,
and trip distance. We consider the surplus changes without tax revenue redistribution. Table
9 shows that the ranking of policies is identical for all subgroups of individuals except for the
highest distance quantile, for which the mean surplus decreases the most under the variable
toll. The category of individuals under 18, students in kindergarten, elementary, middle and
high school, and individuals with trips less than 11.5 km are the least affected under the
variable toll. These subgroups lose less than e10 cents. This is due to the short distance of
their trips, implying gains from improved speeds at peak hours and low toll costs. In addition,
the two lowest distance quintiles have a positive surplus variation; while all the other groups
are associated with losses. Across all policies, the most affected individuals are those between
35 and 60 years old, the two lowest wealth quintiles, those with a family, and the longest
distance commuters. Among employed individuals, white-collar workers are the most affected
by the policies. Our transportation choice model indeed suggests that blue-collar workers
have the lowest disutility from driving outside peak hours, reflecting higher flexibility in their
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schedules. Except for individuals with short commutes, there is little heterogeneity in the
policies’ effects across trip distance for the driving restriction and the uniform toll, while the
heterogeneity of the policies’ effects according to trip distance is more pronounced for the
variable toll.

Table 9: Average surplus variation by demographic group.
Driving Uniform Variable

restriction toll toll
Age < 18 -0.228 -0.303 -0.057
Age ∈ [18-25[ -0.195 -0.269 -0.148
Age ∈ [25-35[ -0.272 -0.366 -0.184
Age ∈ [35-45[ -0.322 -0.43 -0.237
Age ∈ [45-60[ -0.327 -0.437 -0.238
Age ≥ 60 -0.306 -0.403 -0.178
Wealth ≤ 110,000 -0.303 -0.4 -0.207
Wealth ∈ ]110,000-152,000] -0.32 -0.423 -0.213
Wealth ∈ ]152,000-205,000] -0.299 -0.397 -0.188
Wealth ∈ ]205,000-283,000] -0.252 -0.341 -0.141
Wealth ≥ 283,000 -0.208 -0.288 -0.106
Independent -0.298 -0.419 -0.241
White collar -0.331 -0.427 -0.223
Blue collar -0.283 -0.394 -0.213
Education ≤ high school -0.233 -0.309 -0.059
Education > high school -0.128 -0.185 -0.113
Family -0.29 -0.388 -0.18
Single -0.205 -0.276 -0.126
Distance ≤ 2.05 km -0.174 -0.245 0.02
Distance ∈ ]2.05, 5.4] km -0.284 -0.384 0.002
Distance ∈ ]5.4, 11.5] km -0.303 -0.404 -0.087
Distance ∈ ]11.5, 21.4] km -0.289 -0.387 -0.231
Distance > 21.4 km -0.331 -0.43 -0.56
Average -0.276 -0.370 -0.171
Note: in e/trip.

Environmental impacts The results in Table 10 below show the differences between
policy instruments’ efficiency in reducing carbon and local pollutant emissions. The three
policies have roughly the same impact: they reduce carbon emissions by 300 to 380 tons
of CO2 emissions while the decreases in local pollutant emissions lie between 1.2 and 1.6
tons of equivalent NOX emissions. As a robustness check, we measure the policy effects on
emissions using our alternative estimates of car local pollutant emissions that depend on
driving speeds (see Appendix B.2.2). We obtain slightly more emissions avoided, but the
heterogeneity patterns across pollutants and policies remain identical. Overall, the speed
improvements are responsible for a small share of the total decrease in emissions, representing
at most 20.5% for HC emission changes and 11.6% for NOX emissions.
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Table 10: Changes in emissions under the different policies.
Driving Uniform Variable

restriction toll toll
Main emissions estimates
∆CO2 -300 -383 -330
∆NOX -0.379 -0.481 -0.432
∆HC -0.104 -0.134 -0.112
∆PM -0.052 -0.068 -0.057
∆Eq. NOX -1.24 -1.59 -1.37
Alternative emissions estimates (Copert)
∆NOX -1.05 -1.3 -1.08
∆HC -0.071 -0.088 -0.064
∆PM -0.048 -0.06 -0.051
∆Eq. NOX -1.84 -2.28 -1.92
Relative importance of speed changes (Copert)
NOX 11.6 9.9 10.3
HC 19.7 18.8 20.5
PM 8.12 6.88 7.38
Eq. NOX 10.2 8.66 9.01
Note: ∆ emissions in tons. “Eq. NOX” aggregates the local pollutants
into equivalent NOX emissions. Relative importance in %.

Average costs of regulations We calculate the average costs of reducing carbon and local
pollutant emissions separately. The results, presented in Table 11, show that the costs of
regulations are around 240 times lower for a ton of CO2 emissions than for a ton of equivalent
NOX emissions. The report from the DG MOVE (2014) suggests that the value of a ton of
CO2 is 326 times lower than that for a ton of NOX; thus, our emissions costs are in line with
the relative value for NOX and CO2 emissions. However, the estimated costs of reducing
emissions are at least 40 times higher than the social values (the report of the DG MOVE
(2014) recommends e13,000/ton of NOX and e50/ton of CO2). However, during a pollution
peak, we expect the social cost of emissions to be much higher than the long-term values of
emissions savings. To our knowledge, there is no recommendation for the value of emissions
under these circumstances.

Table 11: Average costs of regulation for the different policies.
Driving Uniform Variable

restriction toll toll
w/o redistribution ∆CO2 3,720 3,893 2,094

∆EqNOX 897,728 935,863 502,556
with redistribution ∆CO2 3,720 -72 -549

∆EqNOX 897,728 -17,192 -131,690
Note: in e/ton.

In Appendix D.3, we analyze more outcomes: the substitution patterns across transportation
modes, travel time variations, and the marginal costs of congestion under the different policies.
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Robustness checks We focus on peak-hour policies for two reasons. First, congestion is
most severe at peak hours, leading to high pollution levels and more time spent in traffic.
The second reason is technical: in our sample, we observe individuals without alternatives
to driving, so they cannot comply with driving restrictions applicable all day. To analyze
such all-day driving restrictions, we make assumptions regarding non-compliance costs and
provide the results in Appendix D.6.1. The ranking across policies remains the same, but the
regulations are costlier for individuals, as inter-temporal substitution is no longer possible.

Our analysis holds the quality of public transport constant. In Appendix D.6.2, we check
the sensitivity of the results to changes in the overcrowding levels in public transport. We
consider the benchmark variable toll and two scenarios where overcrowding levels increase by
15% and 30%. These assumptions are rather extreme since public transport usage at peak
hours increases by 11% in our benchmark. We find minimal changes in the transportation
mode shares and equilibrium speeds. The total surplus loss would be 9% and 18% higher in
the two scenarios, highlighting the small role of public transport overcrowding.

In our benchmark model, we do not consider the role of travel time reliability and how
it could be affected by hypothetical policies. In Appendix D.6.3, we use a transportation
choice model specification that includes travel time reliability and analyze how the welfare
results change when we improve the driving time reliability level at peak hours. A 46.5%
decrease in travel time reliability at peak hours increases car usage by less than 1% at peak
hours, suggesting that reliability plays a limited role in individual transportation decisions.
Furthermore, the improvement reduces the aggregate surplus losses by 23%.

6 Mitigating the surplus losses

6.1 Welfare-maximizing personalized tolls

To put our welfare measures in perspective, we compare surplus losses obtained under the
variable toll to a first-best benchmark. We define first-best as a situation where the social
planner sets personalized road tolls to maximize a welfare measure subject to a traffic-level
constraint. Formally, we solve the following social planner problem:

max{v,p}W (v, pn)
such that ∑N

n=1 ωnknsnt(v, pn) = K̄t for t = peak hours
vat = fa (Ka

t (v,p)) ∀a = 1, ..., A, t = {peak, off-peak}

We consider three different objective functions to maximize: aggregate consumer surplus,
the sum of consumer surplus and tax revenue (W1), and the sum of consumer surplus and
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tax revenue minus the cost of emissions (W2). The regulator is subject to two types of
constraints. First, the total traffic (represented by the total number of kilometers driven at
peak hours) should meet the objective, K̄t. Second, the social planner considers the road
congestion technologies that determine the equilibrium speeds in each area. We additionally
put some bounds on the toll values: tolls must be positive and below or equal e50.15 Here,
we compare policies that achieve the benchmark traffic reduction (34%). Still, we can solve
for welfare-maximizing personalized tolls associated with any traffic level to calculate the
optimal traffic reduction and the set of personalized tolls to achieve it (see Figure 15 in
Appendix D.4).

Table 13 shows that under all objectives, the aggregate consumer surplus decreases, indicat-
ing that the reduction in traffic has a cost in terms of surplus. Maximizing consumer surplus
leads to no tax revenue. The reason is that the distribution of tolls has almost a bi-modal
distribution (see Table 12): 61% of drivers are subject to zero tolls, while 39% of them pay
tolls greater than e26.6. Such personalized tolls thus act as targeted driving restrictions
and reduce the surplus losses by a factor of 6.3. When we include the tax revenue in the
welfare outcome, we obtain positive effects of the personalized tolls, and they multiply the
gains by between 1.6 and 1.7. The personalized tolls are much more moderate since they
lie between zero and e11.6. Furthermore, less than 1% of drivers do not pay any toll. This
is due to the inclusion of tax revenue which increases with the toll value until reasonable
values. Due to the relatively low social cost of emissions, including them in the objective of
the social planner leads to only marginal changes in welfare impacts and the distribution of
personalized tolls, as can be seen in Table 12.

While welfare maximizing tolls lead to a larger share of the population with a lower surplus
(71.1% of the people versus 60.8% under the variable toll), we see that the losers are less hurt
than under the variable toll (the minimal surplus change is -e3.14 and -e3.07 against -e4.07
under the variable toll). In contrast, the maximal gain is also higher under welfare-maximizing
personalized tolls.

Table 12: Distribution of the personalized tolls.
Min p25% Median p75% Max

Max. CS 0 0 0 37.7 50
Max. W1 0 0.702 1.82 3.46 10.9
Max. W2 0.003 0.708 1.85 3.54 11.6

15We could consider alternative objectives for the social planner, such as sum of consumer surplus with
redistributive weights or assign different weights to the components of W2.
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Table 13: Welfare effects of personalized tolls.
Variable toll Personalized tolls

Max. CS Max. W1 Max. W2
Total ∆CS (Me) -0.691 -0.11 -0.778 -0.775

∆CS, constant speed -0.931 -0.588 -1.12 -1.12
∆CS from speed 0.24 0.478 0.345 0.349

Total ∆wCS (Me) -0.752 -0.18 -0.796 -0.792
Tax revenue (Me) 0.872 0 1.08 1.08
∆W1 = ∆CS + Tax revenue (Me) 0.181 -0.11 0.307 0.306
∆W2 = ∆CS + tax rev. - ∆E (Me) 0.212 -0.065 0.346 0.347
∆ CO2 (ton) -330 -469 -420 -428
∆ eqNOX (ton) -1.37 -1.95 -1.74 -1.78
% ∆CS > 0 18.9 48.9 8.66 8.63
% ∆CS < 0 60.8 30.9 71.1 71.1
Min ∆CS (e) -4.07 -4.14 -3.14 -3.07
Max ∆CS (e) 0.766 2.49 1.35 1.37
Note: “∆E” are changes in emissions valued at standard levels.

Since implementing personalized prices might be too difficult in practice, we investigate
other flexible yet feasible road toll schemes. We measure the impacts of location-specific
tolls (inside and outside of the city center) and tolls composed of a fixed part and a variable
(kilometer-based) part in Appendix D.4. Table 14 below summarizes the welfare gains
achieved by the different second-best tolls. The two-part toll, with a fixed fee and variable
part, achieves 78% of the welfare gains obtained under the welfare-maximizing personalized
tolls. The simple variable toll is relatively efficient since it generates 69% of the maximal
welfare gains. The area-specific and uniform tolls have lower performances and generate 42%
and 21% of the welfare gains under personalized tolls, respectively.

Table 14: Welfare effects of personalized tolls versus second-best instruments.
∆W2 %∆W2 w.r.t.
(Me) personalized tolls

Personalized 0.306 100
Fixed and variable 0.24 78.4
Variable 0.212 69.2
Area-specific 0.127 41.5
Fixed 0.064 20.7

In Appendix D.5, we study an auction resembling Shanghai’s vehicle license regulation (see
Li, 2018). The policy leads to slightly larger tax revenues and greater emissions reduction.
However, this policy generates larger surplus losses because by not buying a driving license,
individuals commit to not driving, which is costly for individuals. In the end, this policy
instrument decreases the total welfare.
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6.2 Attribute-based driving restrictions

Low emission zone policies are widely used in Europe.16 They impose driving restrictions
based on combinations of fuel type and vintage to remove the most pollutant cars from
the roads. Attribute-based policies are thus more cost-efficient at reducing emissions but
generate greater distributional consequences than simple driving restrictions. We study the
trade-off faced by policymakers by comparing the standard driving restrictions against two
attribute-based policies: one banning all vehicles below a particular vintage and one banning
diesel cars with a certain probability. While individuals are likely to change their cars in
response to such policy, as shown by Barahona et al. (2020), we abstract from any effect on
the fleet’s composition.

As before, we calibrate the policies to reach the same traffic reduction as under the regular
driving restriction. Since car vintage is a discrete variable, we cannot exactly match the
expected number of kilometers at peak hours with this parameter only. We use the strictest
vintage and assume that individuals are subject to the policy with a certain probability. For
the diesel-based restriction, we assume all diesel cars have a probability of being affected.
These technical assumptions can be interpreted as the frequency at which the policy is
implemented. The calibrated are as follows: the vintage selected is 2006, above the average
car vintage of 2004, and the policy should be applied 90% of the time. This regulation
restricts 50.8% of the population. The diesel-based restriction should be applied 72% of the
time and affects 47.6% of the people.

As Table 15 suggests, the vintage-based policy is slightly more costly for individuals,
generating e1.19 million of surplus losses versus e1.11 million for the standard driving
restriction. In contrast, the diesel-based restriction causes lower surplus losses (e1.03 million).
Under the vintage-based and diesel-based regulations, 28.9% and 32.2% of the population
experience a surplus increase, highlighting the existence of distributional effects. Aggregate
surplus losses measured using the redistributive weights are significantly higher for both
attribute-based policies than for the standard driving restriction, pointing out that they hurt
low-income individuals more.

The vintage-based restriction is also more efficient at reducing equivalent emissions, de-
creasing NOX emissions 55% more than simple restrictions. The improved emission reduction
balances the higher surplus losses through a lower implied average cost of regulation, reduc-
ing it by e125,000/ton. The targeting effectiveness is more nuanced for the diesel-based

16For instance, in 2022, 82 German cites and 15 French cities are under low emission zone restrictions.
Madrid, Barcelona, Milan, Rome, and Naples are additional examples of large cities with this type of policy.
Source: https://urbanaccessregulations.eu/countries-mainmenu-147. Last accessed: 08/04/2022.
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restriction: CO2 emissions decrease less than in the standard restriction, but we observe
larger reductions of local pollutants. The net emission benefits are identical under diesel and
traditional driving restrictions (e0.28 million).

Table 15: Surplus changes under different driving restrictions.
Standard Vintage-based Diesel-based

Total ∆CS (Me) -1.11 -1.19 -1.03
∆CS, constant speed -1.28 -1.36 -1.18
∆CS from speed 0.164 0.164 0.152

∆W2 = ∆CS + tax rev. - ∆E Total ∆wCS (Me) -1.16 -1.37 -1.11
∆CO2 (ton) -300 -363 -259
∆eqNOX (ton) -1.24 -1.92 -1.36
Implied cost eqNOX(e/ton) 897,728 621,314 756,039
% ∆CS > 0 0.075 28.9 32.2
% ∆CS < 0 79.7 50.8 47.6
Note:“∆E” are changes in emissions valued at standard levels.

6.3 Improving public transport

While the main analysis focuses on traffic policies, we can provide insights on how improve-
ments to public transport can mitigate consumer surplus losses. Public transport is the most
used transportation mode in our data; however, 28.5% of the individuals do not have access
to it. In the first scenario, we improve public transport coverage by allowing these individuals
to use a hypothetical public transport service. We use the median characteristics of public
transport: a speed of 14.6 km/hr, a price of e1.24, and congestion levels of 171% at peak
hours and 80% at off-peak hours, two layovers and only using the railway system. In the
second scenario, we decrease public transport travel times by 40%, similar to a frequency
or speed improvement. Finally, in the third scenario, we make public transport free. We
compare the effects of the variable toll with and without the three different public transport
improvements. The quality improvement and the free usage increase the total public transport
usage by around 10%. In contrast, the coverage improvement increases use by almost 30%,
indicating that improving coverage is the best instrument to increase public transit ridership.

Surplus changes are shown in Table 16. Public transport improvements reduce consumer
surplus losses by between 8% and 34%. The largest reduction corresponds to coverage
improvements. All policies reduce car usage and therefore imply lower tax revenues. Moreover,
reducing surplus losses does not compensate for the lower tax revenue, generating lower
welfare gains across all scenarios. However, this welfare measure does not include public
transport revenue, which would increase in the first two scenarios. The share of winners
from the toll slightly increases due to the coverage improvement, rising to almost 19.6%. In
addition, this policy considerably reduces the losses for the most affected individuals.
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Table 16: Consumer surplus variation under public transport improvements.
(1) (2) (3) (4)

Total ∆CS (Me) -0.691 -0.528 -0.475 -0.636
∆CS, constant speed -0.931 -0.797 -0.692 -0.842
∆CS from speed 0.24 0.269 0.217 0.206

Total ∆wCS (Me) -0.752 -0.57 -0.551 -0.689
Tax revenue (Me) 0.872 0.715 0.818 0.762
∆W1 = ∆CS + Tax revenue (Me) 0.181 0.187 0.343 0.126
∆W2 = ∆CS + tax rev. - ∆E (Me) 0.212 0.228 0.366 0.155
∆CO2 (ton) -330 -440 -239 -312
∆eqNOX (ton) -1.37 -1.82 -0.998 -1.31
Implied cost local pollutants (e/ton NOX)
W/o redist (e/ton) 502,556 289,501 475,596 485,850
With redist (e/ton) -131,690 -102,474 -343,887 -96,116
% ∆CS > 0 18.9 20.8 28.8 18.1
% ∆CS < 0 60.8 59 50.9 61.6
Min ∆CS (e) -4.07 -2.47 -3.93 -4.11
Max ∆CS (e) 0.766 0.78 1.02 0.672
Note: (1): Benchmark. (2): Coverage improvement. (3): Duration improvement. (4): Free access.

7 Discussion about the scope of the model
Our equilibrium transportation decision model is rich and provides interesting insights into
the different policy effects. We focus here on predicting the impacts of simple policies that we
have seen implemented in practice. However, our model could predict many more interesting
counterfactual situations. Here, we outline a few counterfactuals that could be done and
discuss their possible relevant assumptions.

Change in road congestion technology Recent urban policies consist of pedestrian-
ization of specific roads, as well as their conversion into bike lanes. By reducing the road
capacity for cars, such policies reduce speed for the same level of traffic. We can model
such policies as changes in the congestion technologies, either through parallel shifts of the
curves or a proportional decrease in speed along the curve. Alternatively, we could also
model improvements of the road congestion technology, such as a road capacity increase or
autonomous vehicles that would make traffic smoother.

Carpooling We have recently seen some initiatives to encourage carpooling. The U.S. has,
for instance, a long tradition with high occupancy lanes in 27 metropolitan areas. While
our model cannot predict the impacts of dedicating special lanes to carpooling and how
individuals decide whether or not to carpool, we can still evaluate the benefits of carpooling
under some simple assumptions. For instance, assuming that everyone has to carpool with
three other people, a carpooling requirement amounts to considering that individuals are
only driving one-fourth of their kilometers. Thus, it is equivalent to modifying the mapping
parameter between individuals using their cars and the occupancy rate to φ̃a = φa/4. The
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model can easily accommodate different cost-sharing assumptions and include detours that
increase driving times.

Modifying work conditions We could consider policies incentivizing working from home
a fraction of the time. We can model this similarly to carpooling. For instance, if we assume
individuals work from home one day per week, this is equivalent to reducing the expected
number of kilometers driven by 20% or modifying the mapping parameter between the number
of kilometers driven and the occupancy rate to φ̃a = 4

5φ
a. In addition, our model can be

easily extended to more periods. This would allow us to consider policies like spreading work
schedules that decrease the penalty for commuting outside peak hours and a more uniform
distribution of congestion across time.

Parking cost and availability Recent literature shows the importance of parking prices
and availability on traffic levels (Ostermeijer et al., 2022). The model can easily evaluate
such policy through targeted increases in the costs of car trips.

8 Conclusion
Combining data from a detailed survey, Google Maps, TomTom, and passenger flow in railway
public transit, we estimate a nested logit model to represent the transportation decisions of
individuals for their daily trips to work or places of study in the Paris metropolitan area. The
estimated parameters confirm the importance of trip duration for individual decisions and
reveal profound schedule inflexibility making it challenging to discourage individuals from
driving at peak hours. We combine this transportation mode choice model with a flexible
reduced-form congestion model that predicts how road speeds vary when the number of drivers
changes in the different parts of the city. We simulate the effects of simple transportation
policies and measure their welfare effects on individuals and their impacts on emissions.
We find that all the regulations are costly for individuals. Still, simple driving restrictions
are not more costly for individuals than uniform road tolls because they force everyone to
contribute to traffic reduction. As a result, it generates fewer surplus losses than uniform
tolls on aggregate. However, variable tolls are better than driving restrictions because they
target individuals with long distances and are thus efficient at reducing the total number of
kilometers driven. In contrast, driving restrictions do not raise revenue, unlike tolls. If the
toll revenue is entirely redistributed to individuals, moderate toll values may improve the
total surplus.
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Appendix (for online publication only)

A Additional results on the uniqueness of the model
equilibrium

We provide here the proofs of uniqueness of equilibrium under special cases of our model and
investigate the numerical properties of our algorithm for the general model.

A.1 Special cases

A.1.1 One period, one area

We consider here the case of only one endogenous speed in the model. The equilibrium speed
v is given by:

v − f(φ
N∑
n=1

ωnsn(v)kn + γ) = 0

We define g(v) := v − f(φ∑N
n=1 ωnsn(v)kn + γ). If the non-linear equation admits a solution,

the solution is unique if the function is monotonic, i.e., if |g′(v)| > 0 ∀v ∈ [v, v]. The derivative
is:

g′(v) = 1− f ′(φ
N∑
n=1

ωnsn(v)kn + γ)︸ ︷︷ ︸
≤0

. φ︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂sn(v)
∂v︸ ︷︷ ︸
≥0

,

which is always positive for v ∈ [v, v] as long as the speed function is weakly decreasing in
the occupancy rate and the probability to drive increases with the speed.

A.1.2 Multiple periods, one area

Now, we consider a model with a single area but multiple time periods which are substitutes
for individuals. In this setting we have a system of T non-linear equations, g(v) = 0, where:

gt(v) := vt − f
(
φt

N∑
n=1

ωnknsnt(v) + γt

)

We want to show that the Jacobian of the system is a Leontieff matrix, i.e. the diagonal
terms are positive and the off-diagonal terms are non-positive. First we compute the diagonal
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terms, which resemble the previous derivative and is always greater than 1:

∂gt
∂vt

= 1−f ′(φt
N∑
n=1

ωnknsnt(v) + γt)︸ ︷︷ ︸
≥0

. φt︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂snt(v)
∂vt︸ ︷︷ ︸

≥0

.

Then we compute the off-diagonal terms, which are always negative due to the substitutability
between the different time periods:

∂gt
∂vt′

= −f ′(φt
N∑
n=1

ωnknsnt(v) + γt)︸ ︷︷ ︸
≥0

. φt︸︷︷︸
>0

.
N∑
n=1

ωnkn
∂snt(v)
∂vt′︸ ︷︷ ︸
≤0

.

The Jacobian of g(v) is thus a Leontieff matrix and by Theorem 5 from Gale and Nikaido
(1965) it is a P-matrix. We can then apply the main theorem of Gale and Nikaido (1965)
(Theorem 1) that states that if the Jacobian of a system of non-linear equations is a P-matrix,
the system has a unique solution in its bounded support.

A.2 General model

We provide here the analytical formula for the Jacobian of the contraction defined as:

gat (v, κ) = κ.vat + (1− κ).fa(v).

We can separate the Jacobian in three types of derivatives: ∂ga
t (v,κ)
∂va

t
, ∂g

a
t (v,κ)
∂va′

t

, ∂g
a
t (v,κ)
∂va′

t′
.

∂ga
t (v,κ)
∂va

t
= κ+ (1− κ) fa′

(
φa

N∑
n=1

ωnk
a
nsnt(v) + γa

)
︸ ︷︷ ︸

≤0

. φa︸︷︷︸
>0

.
∑N
n=1 ωnk

a
n

∂snt(v)
∂vat︸ ︷︷ ︸

≥0

∂ga
t (v,κ)
∂va′

t

= (1− κ) fa′(φa
N∑
n=1

ωnk
a
nsnt(v) + γa)︸ ︷︷ ︸
≤0

. φa︸︷︷︸
>0

.
∑N
n=1 ωnkn

∂snt(v)
∂va

′
t

1{ka′

n > 0}︸ ︷︷ ︸
≥0

∂ga
t (v,κ)
∂va′

t′
= (1− κ) fa′(φa

N∑
n=1

ωnk
a
nsnt(v) + γa)︸ ︷︷ ︸
≤0

. γa︸︷︷︸
>0

.
∑N
n=1 ωnk

a
n

∂snt(v)
∂va

′
t′

1{ka′

n > 0}︸ ︷︷ ︸
≤0
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The signs of the derivatives of the probabilities are obtained from the analytical formulas

∂snt(v)
∂va

′
t′

= ka
′
n

(va′
t′ )2 × εnt′ × 60︸ ︷︷ ︸

≥0

× βduration
n

durationn︸ ︷︷ ︸
≤0

× snt
(

(1− σ) sn,t′∑T
t̃=1 snt̃

+ σsnt′

)
1{ka′

n > 0}︸ ︷︷ ︸
≥0

if t 6= t′

∂snt(v)
∂va

′
t

= − ka
′
n

(va′
t )2 × εnt × 60︸ ︷︷ ︸

≤0

× βduration
n

durationn︸ ︷︷ ︸
≤0

× snt
(

1− (1− σ) sn,t∑T
t̃=1 snt̃

− σsnt
)
1{ka′

n > 0}︸ ︷︷ ︸
≥0

B Additional information on data and sample construc-
tion

B.1 Information about the data

The EGT consitute publicly available data on demand on ADISP.17 The survey was conducted
from 2009 to 2011 between October and May, excluding school holidays. The region was
divided into 112 sectors, where between 400 and 500 individuals were interviewed. In addition,
instead of relying on a trip diary where surveyed individuals self-report their trips, the EGT
relies on pollsters visiting households and recording the information of the trips performed
the previous day.

The initial data contains 35,175 individuals and 124,262 trips. In our final sample, we
keep work and study-related trips and only the first trip of the day. We drop trips if
one of the variables we need for the model is missing (origin, destination, departure time,
professional activity, residence location, or income class). We also drop trips using less
common transportation modes that are not included in our choice set (e.g. taxis, boats)
or individuals who took their first work trip outside the morning time window (generously
defined as 4:00 a.m.- 3:00 p.m.). This leaves us with a final sample of 12,975 individuals.

The survey maps the Paris region into a grid with 1,489,347 squares to locate individual
trips’ origins and destinations. Each square is 100 square meters. Thus, we use the GPS
coordinates of the centroids of the grid squares. This approach limits any trip geocoding
inaccuracy to a maximum of approximately 70 meters.

Google Maps and TomTom Directions APIs provide directions and expected travel times
associated with a given origin and destination pair of GPS coordinates at a specified departure
time. The data from these API services have been used previously in the transportation

17Enquête Globale Transport (EGT) - 2010, DRIEA, ADISP, see http://www.progedo-adisp.fr/.
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literature (see Kreindler, 2022, Hanna et al., 2017, Akbar and Duranton, 2017, and Tarduno,
2022). We use TomTom data for driving times because this API gives 2,500 free queries daily.

The public transport queries were done on June 2nd, 2019, setting all trips to take place on
Tuesday, June 4th, 2019, with a departure time at 9:30 a.m. The car queries were done in
April 2021, setting the trips to take place the Thursday 16th of September 2021 at 8:30 a.m.
for peak hours and 6:30 a.m. for off-peak hours.

TomTom queries for future dates use historical trip data and not the live conditions. We
may be worried that TomTom modified its prediction algorithm because of Covid. To solve
concerns regarding the impact of Covid on traffic and TomTom’s predictions, we compare
our TomTom queries at peak hours (8:30 a.m.) with Google maps queries done in August
2019. We find that the average difference between the two data sources implies that TomTom
queries predict trip durations 7.5% larger than the older ones from Google maps, with a
median difference of 7.6%. The results suggest that the Covid crisis did not significantly
decrease traffic and affected the prediction algorithm of TomTom. Furthermore, they show
the similarities between the two sources and thus TomTom’s reliability.

B.2 Car fuel consumption and emissions

B.2.1 Baseline estimation method

The EGT data do not include the information for car fuel consumption and emissions, so we
rely on a prediction model. Since fuel consumption and car emissions are linked through the
formula:

CO2j = fcj × ftk(j),

where fcj is the fuel consumption (in liter/km) for car j and ftk(j) reflects the quantity of
CO2 emissions in a liter of fuel and is equal to 2,287 g/L for gasoline cars and 2,686 g/L
for diesel cars. We thus predict car CO2 emissions and obtain the fuel consumption using
the above formula. Our prediction model includes the following explanatory variables: fuel
type, horsepower, a linear time trend, and the emission standards applicable at that time.
To estimate this prediction model, we use car registration data in the Paris metropolitan
area from 2003 to 2018 that contain the main car characteristics, sales, and the value of CO2

emissions.18

We complement these data with local pollutant emissions data by car model from the
UK Vehicle Certification Agency.19 Note that the emissions data are all from official car

18These are proprietary data obtained from the French Car Manufacturers syndicate “CCFA” (for 2003-2008)
and AAAData (for 2009-2018).

19Source: https://carfueldata.vehicle-certification-agency.gov.uk/downloads/archive.aspx
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manufacturer tests and may be different from real-time driving emissions, as pointed out by
Reynaert and Sallee (2021).

We first match the French car registration data to the UK emissions data so that we can
weigh each car model in the UK emissions data by their sales in Paris metropolitan area in
the prediction model. The two datasets do not contain the same car characteristics, so we
rely on the following matching algorithm:

1. We compute the total car sales by year, brand, model name, fuel type, and CO2

emissions in the French data.

2. We merge them with the UK emissions data by year, brand, model name, and fuel type.
Since there are several versions for the same combination in the UK data, we select the
closest neighbor based on cylinder capacity and CO2 emissions. We use the following
formula to compute the distance to every potential match:

distance =

√√√√(CO2,FR − CO2,UK

CO2,FR

)2

+
(
CylinderFR − CylinderUK

CylinderFR

)2

3. To ensure the matching accuracy, we drop observations for which either the percentage
difference in CO2 emissions or cylinder capacity between the two matches is larger than
10%.

4. For each pollutant, we drop car models for which the emission levels are above the
corresponding Euro standard limit. We also drop cars whose emissions are lower than
a tenth of the Euro norm value, as they probably correspond to reporting errors.

For hybrid cars and other fuel types (liquefied petroleum or natural gas), we observe that
the top models in France are not available in the UK emissions data. Thus, we rely on another
dataset that provides car emissions data from 2012 to 2015. The data come from the French
environment agency (“ADEME”).20 We follow the same procedure described above but allow
for more discrepancy between the potential matches. Specifically, we drop observations only
if the percentage difference in CO2 emissions or cylinder capacity between the two matches is
above 30%. We also rely on these ADEME data to obtain estimates of PM emissions for
gasoline cars since the UK data only provide PM emissions for diesel cars.

..
20Source: https://www.data.gouv.fr/fr/datasets/emissions-de-co2-et-de-polluants-des

-vehicules-commercialises-en-france/. We prefer not to use it for conventional fuel cars because the
sample period is limited to the latest emission standards.
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Once we have a final sample of car models with their corresponding sales and emissions, we
estimate a prediction model. We specify the emissions level of a specific pollutant as a linear
function of the horsepower, a linear time trend, and dummies for the years of changes in
the emissions standard of this particular pollutant. We allow the parameters to be different
by fuel type. Finally, we regress the logarithm of the emission levels on car characteristics
for PM emissions because PM data are less reliable and have more outliers. All regressions
are weighted by the car model sales. Given the small matched sample size (91 observations)
for hybrid cars and other fuels, we do not estimate a prediction model and instead use the
sales-weighted average emission levels by fuel type. Emissions for electric vehicles are set to
zero for all pollutants. For some individuals in EGT data, the car vintage and horsepower
are missing; in such cases, we attribute the average vintage or horsepower values in the EGT
sample conditional on the fuel type.

Table 17: Fit of the prediction models and comparison between observed and predicted emissions.
Gasoline Diesel

Pollutant R2 Observed Predicted Predicted R2 Observed Predicted Predicted
Copert Copert

CO2 0.84 203.1 197.1 0.83 171.4 167.5
NOX 0.31 100 62.1 87.9 0.78 370.5 345.6 568.8
HC 0.51 100 88.2 29.2 0.14 114.4 55.5 14.3
PM 0.85 0.44 1.59 1.9 0.85 3.26 23.1 30.2
Note: For PM emissions, we obtain the same R2 for diesel and gasoline since the estimation is performed on pooled data.
‘Observed average emissions’ are calculated on the CCFA data for the year 2003 (the average car vintage in the EGT sample)
except for PM. For PM emissions, we use the earliest year with available data: 2012 for gasoline and 2005 for diesel.
‘Predicted’ average emissions are computed on the EGT data using survey weights. For the Copert methodology we assume a
speed of 45 km/hr.

B.2.2 Alternative method for emissions estimates

We follow an alternative method to estimate car emissions of local pollutants that depend
on driving speed. We rely on Copert emissions factors for cars published in the COPERT
methodology report (2020).21 This report provides emission functions that link a car’s
emissions of local pollutants with its speed depending on fuel type, emission standard, and
car segment (in four categories: mini, small, medium, and large).

The EGT data does not directly provide the car segments, so we predict them from the
fiscal horsepower. We use our proprietary car data containing the horsepower and segment
for each car in the choice set from 2003 to 2018. We specify an ordered logit model to predict
the car segment from its horsepower. More specifically, we consider:

1(Ci = ck) = 1 (nk ≤ hi + ηi ≤ nk+1) ,
21See https://www.emisia.com/utilities/copert/documentation/.
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where Ci is the segment of car model i and ck = c1, ...cK are the different possible segments
ordered from the smallest to the largest. hi is the observed horsepower of the car, and ηi
is a random error that we assume to follow a logistic distribution. Finally, nk = n1, ...nK−1

are the segment threshold that we want to estimate. The probability that car i belongs to
segment ck can be expressed as:

P (Ci = c1) = P (hi + ηi ≤ n1) = Fη(n1 − hi)
P (Ci = ck) = P (hi + ηi ≥ nk−1 & hi + ηi ≤ nk) = Fη(nk − hi)− Fη(nk−1 − hi) for k ∈ [2, K − 1]
P (Ci = cK) = P (hi + ηi ≥ nK−1) = 1− Fη(nK−1 − hi)

We estimate the parameters nk = n1, ..., nK−1 by maximum likelihood.

Additionally, we assign cars to an emission standard from their vintage: cars with a vintage
below 2000 are under Euro 2 standards. From 2000 to 2005 they are under Euro 3 standards.
From 2005 onward, they are subject to Euro 4 standards. Since both the Copert emissions
data and the EGT data include information on fuel types, we can directly match survey cars
to the correct set of factors by fuel type. We assume electric vehicles do not emit pollutants.

B.3 Cost estimation

The survey does not report the costs incurred by the individuals, so we estimate them. For
all transportation modes, we neglect the fixed expenses. Thus, expenses like car purchase
price, insurance, taxes, or parking costs, are not included in our estimates. The rationale is
that we focus on the short-term reaction to policy introduction, implying that individuals
cannot avoid these fixed costs. Moreover, walking is always free, while cycling is free only for
households that own bicycles. If the individual has an annual bike-sharing subscription, the
subscription cost is divided by 730, equivalent to assuming two bike trips per day. In other
cases, we consider biking has the price of a single bike-sharing ticket, e1.7.

B.3.1 Public transport

Public transport in Paris comprises a network operated by two companies: “RATP” mainly
covers the public transport inside Paris and close suburbs, and “SNCF” operates trains
connecting Paris to the suburban areas. During our data period, the RATP pricing system
relies on five pricing zones of the trip’s origin and destination. We use the prices stated in the
price guide of RATP for July 2011.22 In contrast, the ticket price using the SNCF network
depends on the exact stations of origin and destination rather than zones. Since there is no

22Source: “Guide tarifaire”, Juillet 2011, https://www.slideshare.net/quoimaligne/guide-tarifaire
-ratp-sncf-ile-de-france-2011.
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exhaustive data on the prices for all combinations of origin and destination train stations, we
rely on a sample of ticket prices for 36 origin and destination pairs and estimate the train
ticket price as a cubic function of the distance between stations. This regression has a good
fit with an R2 of 0.82. We use this function to predict prices for all origin-destinations pairs
in the SNCF network.

For individuals with a public transport subscription, we estimate a trip’s average cost by
dividing the daily price of the subscription by two, which is the average number of trips taken
in a day conditional on using public transport. For individuals without a subscription, missing
information about their subscription coverage, or taking a trip outside their subscription
coverage, we assume they pay the regular ticket price. Seven individuals stated to have
used the service without paying (fraud); we attribute a zero cost for these trips. The survey
includes information on whether individuals can buy subsidized or reduced-price tickets or
subscriptions; we use this information when computing the cost of public transport.

B.3.2 Cars and motorcycles

We estimate the cost of using a car or a motorcycle by combining the trip distance from the
itinerary provided by TomTom, estimates of the fuel consumption of household vehicles, and
average fuel prices in 2011 from the National Survey Institute (“Insee”).23 For motorcycles, we
assign the average fuel consumption by the number of cylinders, which is the only motorcycle
characteristic we observe in the EGT data .24 When a household has multiple vehicles, we
assume the trip uses the most fuel-efficient one. We also assume each individual pays the
total cost of the trip, regardless of the number of passengers.

B.4 Public transport overcrowding

We first compute a line-level measure of overcrowding in public railway transport. To do so,
we rely on data provided by SNCF and RATP on the number of passengers at the metro or
train station level. We use data for 2015, the oldest data available, and consider only the
urban railway network, where overcrowding is the most problematic. The data only record
the validations from passengers that use an electronic metro card; there is no exhaustive
data on passengers using tickets. Estimates suggest that the electronic validations represent
two-thirds of the traffic for 2016; during morning peak and off-peak hours, the share should

23Source for fuel prices: https://www.prix-carburants.developpement-durable.gouv.fr/petrole/
se_cons_fr.htm.

24Source: French Energy Agency (“ADEME”). See https://www.statistiques.developpement-durable
.gouv.fr/les-deux-roues-motorises-au-1er-janvier-2012.
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be even higher.25 We exploit the variation between peak and off-peak hours traffic across
metro lines to estimate the role of overcrowding in transportation decisions. As long as traffic
is homogeneously underestimated over the network and periods, omitting a portion of the
traffic is not a major problem.

The data are composed of two separate datasets. The first contains daily entry flows of
passengers at the railway station level. The second dataset contains “hourly profiles” at the
station level: the distribution of validations (in %) across hours for different periods (business
days outside holidays, business days during school holidays, and weekends).26 By combining
these datasets, we obtain daily estimates of the number of passengers in each metro station
for regular business days. We exclude weekends, school holidays, public holidays, and two
dates with a relatively low total number of entries.27 In the end, we average traffic levels over
172 days. We use the passenger flow between 7:00-8:59 a.m. to represent peak hours and
6:00-6.59 a.m. for off-peak hours. We observe the number of passengers entering each station,
but not the line they take. Thus, we allocate passengers to metro lines proportionally, using
the annual traffic levels by lines as weights.

We also use schedule data that provide frequencies of trains at the station level for September
2015.28 We average across stations to get the expected number of trains for each railway line.
Additionally, we gather information about the passenger capacity of the train models used
on each line.29 The passenger capacity represents the number of passengers a train can carry,
assuming four passengers per square meter. We compute the total railway line passenger
capacity each period by multiplying the train capacity by the number of trains per hour.
Finally, the overcrowding level clt for line l, at period t is:

clt = plt
2× tclt

,

where plt is the hourly number of passengers in line l at time period t, tclt is the line total
passenger capacity per hour. Since there are two directions, we multiply the total line
capacity by two and use the total number of passengers going in both directions. Finally,
we obtain individual overcrowding levels by weighting the overcrowding level of each line

25See https://www.iledefrance-mobilites.fr/usages-et-usagers-des-titres-de-transport.
26We use the average profiles for the business days outside holidays for the second semester of 2015 since

we noticed some problems with the data from the first semester 2015: the percentages did not sum to 100%
for 20 stations.

27These record total daily traffic levels below a million, while the average is 7.5 million according to the
official figures of the RATP. We interpreted this low number of passengers as indicating the occurrence of a
strike.

28‘General Traffic Feed Specification’, see: https://transitfeeds.com/l/162-paris-france.
29We rely on Wikipedia and internal reports from the transport organization in the Paris area “STIF”

containing information about the fleet of trains.

54

https://www.iledefrance-mobilites.fr/usages-et-usagers-des-titres-de-transport
https://transitfeeds.com/l/162-paris-france


used in a trip by the time spent in that line. Finally, we provide in Table 18 the estimates of
the overcrowding levels in the different metro and train lines. On average, we estimate the
overcrowding to be 0.89 at off-peak hours and 1.43 at peak hours. But these averages hide
substantial heterogeneity across lines that provide key variations for estimating the sensitivity
to overcrowding in public transport.

Table 18: Estimates of overcrowding levels in the railway public transit.
Metro Suburb trains

Line Off-peak Peak Line Off-peak Peak
1 0.43 0.72 A 2.35 4.37
2 0.5 0.77 B 0.55 1.07
3 1.04 1.29 C 0.58 1.16
3B 0.18 0.36 D 1.24 1.75
4 0.6 1.11 E 0.78 1.37
5 1.3 1.84 H 0.4 0.71
6 0.72 1.01 J 0.63 1.12
7 1.5 1.71 K 1.39 2.22
7B 0.19 0.41 L 0.61 1.36
8 0.86 1.12 N 0.48 1.01
9 0.81 1.07 P 1.91 3.82
10 0.59 1.13 R 0.93 1.3
11 0.98 1.39 U 0.88 2.1
12 1.07 1.44
13 1.62 1.93
14 0.56 0.95

B.5 Real estate values

We proxy household wealth using expected housing values. To estimate each household’s
real estate price, we rely on a database containing all real estate transactions in France for
2014-2015 from the French tax authority and CEREMA.30 We use this period since it is the
earliest for which these data are publicly available.

We match each household to all the estate transactions from the municipality of residence
and the neighboring municipalities. For Paris, we use the “arrondissement” level.31 We limit
the sample of matches to apartment and house sales and properties sold in one transaction
and exclude partial sales of property. We drop transactions with a price of zero or above five
million euros and keep only the properties with a built surface between 15 and 500 square
meters. We then compute the average price per square meter for each transaction by dividing
the price by the property’s built surface. Next, we trim the sample and drop the top 0.5
% and the bottom five percent of each municipality’s distribution of square meter prices.

30(“Demande de Valeurs Foncières - DFV+”, see https://www.data.gouv.fr/fr/datasets/dvf-open
-data/#_.

31Paris is split in 20 smaller units called “arrondissements”.
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Next, we estimate individual estate prices by taking a weighted average over all transactions
from the municipality and the neighboring municipalities, using the inverse distance between
the household and the match as weight. We finally multiply the average estate price by the
household surface area reported in the EGT survey. As seen in Table 19, the average real
estate price that we estimate for each area is close to the area-specific price from external
sources, supporting the credibility of our estimates.

Table 19: Comparison of the real estate prices.
Paris Close suburbs Far suburbs

Average from our estimates 8,030 4,789 3,175
Average from official data 8,074 4,338 2,998
Note: in e/m2. Our average is computed using survey weights. Av-
erage from official data obtained by averaging quarterly average prices for
the year 2014. Source: https: / / basebien .com/ PNSPublic/ DocPublic/
Historiquedesprixdesappartementspardep .pdf

B.6 Descriptive statistics of the final sample

Table 20 provides a comparison between the durations and costs for the transportation modes
available to each individual. Taking the car is the fastest option and available to the largest
fraction of individuals. Still, the low initial shares suggest that the high monetary cost
dissuades many from choosing it. Interestingly, public transport is not the fastest nor the
cheapest alternative on average, yet 45% of the individuals choose it in the sample. The
public transport cost does not increase much with distance while the car or motorcycle costs
linearly increase with distance. For this reason, the maximum price of public transport is
lower than the maximum car and motorcycle costs.
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Table 20: Average duration, cost and availability by transportation mode.
Variable Mean Median Std. dev. Min Max
Duration
Bike 52.1 39.6 40.7 0.57 150
Public transport 46.9 41.7 26.9 4.1 279
Motorbike 17.7 15.6 12.4 0.72 93.8
Walk 64.8 54.5 38.6 1.54 150
Car, peak 26.6 21 20.6 0.87 124
Car, off-peak 20.4 16.5 16 0.73 126
Cost
Bicycle 0.64 0 0.82 0 1.7
Public transport 1.25 1.24 1.27 0 10.55
Motorcycle 1.21 0.72 1.39 0 13.72
Car 1.17 0.76 1.25 0 14.24

Mode availability Shares
Bicycle 69.94 2.08
Public transport, peak 71.54 30.33
Public transport, off-peak 71.54 14.52
Motorcycle 12.85 2.08
Walk 42.72 15.8
Car, peak 79.75 22.88
Car, off-peak 79.75 12.31
Note: Durations in minutes, costs in e. Mode availability and initial shares in %.

C Additional estimation results

C.1 Robustness checks for the transportation mode choice model

We first analyze the robustness of our estimates to several model assumptions. We provide
the estimates of the average utility parameters in Table 21 and the implied values of travel
time in Table 22.

Weather controls We use historical hourly data from OpenWeather for the city of Paris
to control for the possible role of weather on individual choices.32 First, we match the
OpenWeather data to the exact departure hour and date provided in the survey. Then, based
on the distribution of temperatures in our sample, we construct temperature quintiles. For
rain and snow, we create four categories based on the levels (in millimeter per hour): 0, less
than 0.3, between 0.3 and 0.8, and more than 0.8. The weather dummies are then interacted
with the bike and walk alternative constants, as these modes are the most susceptible to
being affected by the weather shocks. From the results, we can see that the inclusion of
weather controls has no significant impact on the average sensitivities to duration and cost
and almost no impact on the distribution of valuations of travel time.

32Source for weather data: https://openweathermap.org/.
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Travel time reliability Recent transportation literature has focused on the importance
of the reliability of travel time for individual transportation decisions (Hall and Savage, 2019,
Bento et al., 2020, Engelson and Fosgerau, 2016, Small et al., 2005). We study the role of
preferences for travel time reliability in our model and how including this factor affects our
estimates. We build a measure of travel time reliability by collecting real-time traffic data
from TomTom for all trips in our sample for every weekday between June 13th, 2022, and
June 30th, 2022. We query trip itinerary and durations at 6:30 a.m. (to represent off-peak
hours) and at 8:30 a.m. (for peak hours). We construct a proxy of reliability by taking
the standard deviation of the durations for each trip at each period.33. As seen from the
estimation results, the average utility parameters remain close to the benchmark, and the
distribution of the values if travel time is marginally modified.

Car depreciation cost In the benchmark model, we consider the cost of a car trip to be
determined only by its fuel cost and potential road tolls. Here, we consider an alternative
cost definition that includes the car’s depreciation cost, in the spirit of Hang et al. (2016).
Using the CCFA and AAAdata data for 2003-2011, we regress car prices on fiscal power and
fuel type and use the estimated coefficients to predict car prices for all the cars in our EGT
sample. To get the average trip depreciation rate for each vehicle, we assume the car’s price is
uniformly amortized over twelve years. Then, the yearly cost is divided by 506, equivalent to
taking two trips per workday (253 workdays per year). This gives us the average depreciation
cost per trip. The depreciation cost is, on average, 11.5 times larger than the trip’s fuel cost,
with an average depreciation cost of e3.45, translating into a sharp decrease in individual
sensitivity to cost. We find that the average VOT is e36.8, amounting to 154% of the average
wage in Paris in 2011 (e23.9), very different from what the literature on VOT suggests.

Unobserved preference heterogeneity We consider three extensions of the benchmark
specification that allow for unobserved heterogeneity in the sensitivity to duration, cost,
and the off-peak hour dummy. We thus estimate three random coefficient versions of the
benchmark model, assuming that the random coefficients follow a normal distribution. We
find non-significant unobserved heterogeneity in the sensitivity to trip duration and the off-
peak hour dummy. This result is probably the consequence of including multiple demographic
interactions in the benchmark specification. However, we estimate a significant coefficient for
the heterogeneity in the trip’s cost. Since the standard deviation of the cost sensitivity is

33We also consider another reliability measure given by the difference between the 80th and 50th percentiles
as suggested by Small et al. (2005). We choose to rely on the standard deviation because we obtain a better
fit
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relatively large, a considerable fraction of individuals has either a positive or close to zero
cost sensitivity, which is inconsistent with our model. This specification, in turn, generates
unrealistic extreme valuations of travel time.

Specification for the duration We study different functional form assumptions regarding
the role of the trip’s duration in the utility. We consider utility to be linear in duration
instead of the logarithm of duration, as well as a model with a third degree polynomial on
duration, in the spirit of Small et al. (2005) who specify individual preferences as a polynomial
of distance interacted with duration. The estimates of the values of travel time are rather
sensitive to the assumed functional form. Using the logarithm of duration allows shorter
trips to have a larger disutility from additional travel. Forcing the disutility from travel time
regardless of the trip length considerably reduces all the values of travel time. With the
third-degree polynomial of duration, we obtain a much wider distribution of the opportunity
costs of time than in our benchmark model, but the median value is close to our average. In
addition, we find some negative valuations for trip duration, which is inconsistent with our
model.

Alternative model assumptions We consider several alternative model specifications
to check the robustness of our model estimates to different assumptions. First, we consider
an alternative definition of off-peak hours driving durations. Instead of using only the 6:30
a.m. durations for the off-peak car alternative, we take the average duration between the
TomTom queries at 6:30 a.m. and 9:30 a.m. This change has minimal effects on the average
coefficients and almost no impact on the distribution of the values of travel time.

Second, we estimate a model with three periods: early off-peak hours (departure before
7:00 a.m.), peak hours (departure between 7:00-8:59 a.m.), and late off-peak hours (after
9:00 a.m.). The distribution of the values of travel time indicates slightly lower average and
median values. We indeed estimate a larger sensitivity to the trip cost as Column (9) of
Table 21 shows.

We also consider a model where we modify the nest structure by allowing individuals to
choose first between peak and off-peak hours and then choose the transportation mode. This
model allows for correlation in the preference shocks across all the alternatives within a
departure time. However, column (10) of table 21 shows a high value for the nest parameter
(σ), indicating that the options within nests are almost independent and suggesting that our
nesting structure is more relevant.

Finally, we consider two possible changes to our choice set definition. First, we allow every
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individual to drive, even those who do not own a car. For those without a car, we attribute
the average car cost in the sample. Then, we query the TomTom service for those trips for the
travel times, as with the rest of the sample. As expected, adding a non-available alternative
changes the results by lowering the average utility of driving. However, the sensitivities to
cost and duration are not affected very much. We would still obtain slightly higher values of
travel times. The second change in the choice set definition that we study corresponds to
allowing only individuals who have a bike or a bike-sharing pass to use this mode. We see
very few changes, in particular, the mean valuation for bicycling increases. The distribution
of valuations of travel time remains very close to our benchmark.

Table 21: Average estimated parameters under alternative model specifications.
Coefficients (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Log(duration) -1.92∗∗ -1.92∗∗ -1.79∗∗ -1.96∗∗ -1.92∗∗ -2.09∗∗ -1.92∗∗ -1.95∗∗ -1.74∗∗ -1.88∗∗ -1.91∗∗ -1.91∗∗

(0.065) (0.065) (0.066) (0.064) (0.209) (0.075) (0.065) (0.065) (0.065) (0.221) (0.06) (0.065)
Cost -0.407∗∗ -0.407∗∗ -0.38∗∗ -0.179∗∗ -0.407∗∗ -0.773∗∗ -0.407∗∗ -0.578∗∗ -0.519∗∗ -0.412∗∗ -0.427∗∗ -0.391∗∗ -0.34∗∗ -0.37∗∗

(0.019) (0.019) (0.019) (0.012) (0.019) (0.036) (0.019) (0.021) (0.022) (0.019) (0.019) (0.05) (0.018) (0.019)
Duration -0.519∗∗ -0.97∗∗

(0.018) (0.064)
Duration2 0.055∗∗

(0.009)
Duration3 -0.002∗∗

(0.0004)
Reliability -0.103∗∗

(0.015)
Random coeff. 0.018 0.745∗∗ -0.133

(0.201) (0.059) (0.197)
Bicycle -3.48∗∗ -3.48∗∗ -3.45∗∗ -3.56∗∗ -3.48∗∗ -3.62∗∗ -3.48∗∗ -2.61∗∗ -2.78∗∗ -3.49∗∗ -3.4∗∗ -3.74∗∗ -1.87∗∗ -1.59∗∗

(0.082) (0.083) (0.082) (0.082) (0.449) (0.449) (0.449) (0.069) (0.072) (0.082) (0.082) (0.439) (0.055) (0.058)
Pub. transp., peak -4.88∗∗ -4.83∗∗ -5.21∗∗ -4.73∗∗ -4.88∗∗ -5.28∗∗ -4.88∗∗ -0.808∗∗ -0.91∗∗ -4.85∗∗ -4.92∗∗ -4.62∗∗ -5.04∗∗ -4.82∗∗

(0.2) (0.218) (0.206) (0.201) (0.201) (0.214) (0.2) (0.09) (0.092) (0.2) (0.199) (0.591) (0.194) (0.2)
Pub. transp., off-peak -5.51∗∗ -5.46∗∗ -5.89∗∗ -5.37∗∗ -5.51∗∗ -5.99∗∗ -5.51∗∗ -1.34∗∗ -1.53∗∗ -5.32∗∗ -5.75∗∗ -5.43∗∗ -5.7∗∗ -5.44∗∗

(0.403) (0.439) (0.412) (0.405) (0.404) (0.438) (0.404) (0.173) (0.189) (0.4) (0.398) (1.35) (0.393) (0.403)
Motorcycle -7.35∗∗ -7.3∗∗ -7.52∗∗ -7.27∗∗ -7.35∗∗ -7.95∗∗ -7.35∗∗ -3.06∗∗ -3.41∗∗ -7.42∗∗ -7.3∗∗ -7.53∗∗ -3.95∗∗ -3.7∗∗

(0.226) (0.242) (0.232) (0.227) (0.67) (0.67) (0.67) (0.133) (0.139) (0.217) (0.215) (0.906) (0.11) (0.114)
Car, peak -6.22∗∗ -6.16∗∗ -6.23∗∗ -5.48∗∗ -6.22∗∗ -6.78∗∗ -6.22∗∗ -2.05∗∗ -2.31∗∗ -6.18∗∗ -6.14∗∗ -5.94∗∗ -6.79∗∗ -6.15∗∗

(0.211) (0.228) (0.213) (0.212) (1.07) (1.07) (1.07) (0.105) (0.114) (0.212) (0.21) (0.881) (0.205) (0.211)
Car, off-peak -7.27∗∗ -7.22∗∗ -7.46∗∗ -6.55∗∗ -7.27∗∗ -7.94∗∗ -7.27∗∗ -2.9∗∗ -3.33∗∗ -6.98∗∗ -7.28∗∗ -7.18∗∗ -7.88∗∗ -7.2∗∗

(0.214) (0.231) (0.216) (0.216) (0.214) (0.24) (0.214) (0.101) (0.119) (0.208) (0.209) (0.765) (0.211) (0.213)
σ 0.788∗∗ 0.79∗∗ 0.86∗∗ 0.802∗∗ 0.788∗∗ 0.886∗∗ 0.785∗∗ 0.68∗∗ 0.785∗∗ 0.603∗∗ 0.561∗∗ 0.961∗∗ 0.835∗∗ 0.783∗∗

(0.063) (0.063) (0.064) (0.063) (0.063) (0.075) (0.064) (0.053) (0.06) (0.049) (0.033) (0.116) (0.067) (0.062)
Log-likelihood -13624 -13615 -13595 -13785 -13624 -13548 -13624 -13424 -13385 -13587 -15823 -14525 -14681 -13548
Note: Walk is the baseline alternative. Duration measured in minutes. Cost in e. (1): Benchmark model. (2): Weather controls. (3): Travel time reliability. (4): Car depreciation included
in the cost. (5): Random coefficients on the log of duration. (6): Random coefficients on the cost. (7): Random coefficients on off-peak hour dummy. (8): Utility linear in duration. (9):
Third-degree polynomial of duration. (10): alternative expected car trip durations for off-peak hours. (11): model with three periods. (12): alternative nests. (13): car available to everyone. (14):
alternative definition of bicycle availability. We provide the mean coefficients, the standard-errors are computed using the delta-method.
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Table 22: Values of travel time for the alternative specifications.
Min Q1 Mean Median Q99 Max

log(duration) models
(1) Benchmark 0.442 1.34 15.9 10.3 80.6 389
(2) Weather controls 0.435 1.34 16 10.3 81.1 391
(3) Reliability measure 0.353 1.08 17.3 11.6 88.8 403
(4) Car depreciation cost 1.12 3.34 36.9 24.1 185 897
Random coefficients models
(5) RC on log(duration) 0.44 1.35 15.9 10.3 81.1 388
(6) RC on cost -66,161 -261 23.3 3.71 209 510,273
(7) RC on the off-peak hour dummy 0.442 1.34 15.9 10.3 80.6 389
Duration models
(8) Duration -0.266 -0.266 5.38 5.81 13.8 15.6
(9) 3rd degree polynomial of duration -3.02 -2.59 52.4 15.1 477 2035
Alternative specifications
(10) Alternative off-peak hour expected duration 0.432 1.31 17.4 11.8 87 387
(11) Model with three periods 0.211 0.75 15 9.91 78.1 335
(12) Alternative nests 0.461 1.39 17.7 12 88.2 395
(13) Car availability 0.755 1.82 21.2 13.9 101 528
(14) Bicycle availability 0.483 1.46 18.7 12.7 93.9 423
Note: in e/hr.

C.2 Additional results

VOT distribution We present the distribution of the value of travel time by age and income
in Figure 6 using second-order local polynomials. Who dislikes spending time commuting
thew most? Very young individuals are associated with large values of the opportunity cost of
time, but the value of time decreases rapidly with age, reaching its minimum at 20 years old.
After that age, the value of time increases, except for a flat part between 30 and 50 years old.
The graph also indicates that the most senior individuals have the highest valuations. One of
the reasons for this shape is that the estimated value of time for young children indirectly
represents those of their parents, who have both to commute to work and drop off their
children at school. The value of travel time rapidly decreases between 0 and 18, as older
children can commute on their own to school. The steep increase afterward reflects the role
of professional commitments that raise travel time value. We also see heterogeneity in the
value of travel time across income categories, but the heterogeneity is much less pronounced.
Poor individuals have the lowest valuations of time on average, but the opportunity cost of
time increases rapidly with income. The opportunity cost of time displays an inverted bell
shape. From a wealth of e360,000, the opportunity cost increases.
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Figure 6: Value of travel time and individual characteristics.
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Elasticities The elasticities represent the change in the probability of driving at period t
when the driving duration or cost at period t′ increases by 1%:

Edurationn,t,t′ = ∂ log snt
∂ log durationnt′

Ecostn,t,t′ = ∂ log snt
∂ log costnt′

where t and t′ can be peak hour or off-peak hour.

The direct elasticities are very heterogeneous across individuals. For instance, the own
duration elasticity for peak hours is between -3 and -0.06. The heterogeneity partly reflects
the differences in the trip distance, which is highly correlated to duration and cost. It is also
the consequence of the heterogeneity in preferences and access to efficient alternatives to cars.
The cost elasticities are even more dispersed, as they are between -6.8 and 0.34

Individuals are less elastic to changes in duration or cost at peak hours than at off-peak
hours, indicating better substitution from driving at off-peak hours to other options. The
cross elasticities of driving at peak hours to the trip duration at off-peak hours are very low
(0.45 on average), indicating very low substitution. The elasticity of driving at off-peak hours
to the trip duration at peak hours is slightly higher, reflecting the preference for driving
during peak hours. The direct elasticities to driving costs are very low, indicating that the
monetary trip cost is not the most critical barrier to driving. The elasticities are slightly
lower for off-peak hours than peak hours, reflecting the preference for peak hours again.

34We have elasticities of zero because some individuals are fully reimbursed for the driving costs by their
companies, and some use electric vehicles that we assume have zero cost.
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Table 23: Driving duration and driving cost elasticities.
Min p1% Mean Median p99% Max

Own elasticities
Edurationpeak, peak -3 -2.51 -1.28 -1.29 -0.23 -0.06
Edurationoff-peak, off-peak -3.1 -2.66 -1.58 -1.78 -0.49 -0.43
Ecostpeak,peak -6.37 -2.23 -0.4 -0.22 -0.02 0
Ecostoff-peak, off-peak -6.78 -2.53 -0.48 -0.29 -0.02 0
Cross elasticities
Edurationpeak, off-peak 0.06 0.07 0.45 0.4 1.21 1.65
Edurationoff-peak, peak 0.17 0.3 0.87 0.78 1.88 2.09
Ecostpeak, off-peak 0 0.0009 0.13 0.08 0.73 2.42
Ecostoff-peak, peak 0 0.006 0.21 0.13 1.23 3.88
Note: in %.

Figure 7 plots the distribution of own and cross elasticities of the probabilities of driving
at peak and off-peak hours. From panel (a), we see that the elasticities at off-peak hours
are higher than at off-peak hours. This implies that individuals are more likely to substitute
away from driving at off-peak hours than peak hours when driving time increases, reflecting
the schedule constraints. Panel (b) provides the distributions of cross-period elasticities and
shows that individuals substitute more across periods when peak hour driving time changes.

Figure 7: Own and cross duration elasticities for driving.
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C.3 Traffic sensor data and congestion technology estimates

C.3.1 Traffic sensor data

Data source The traffic level and speed data come from two different sources. The highway
traffic data come from the regional road maintenance agency (DRIF). Traffic data for Paris
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and for the ring roads come from the city of Paris.35

Definition of the areas Figure 8 reveals the location of the sensors (red dots) as well as
the definitions of the five areas in our model: city center (light grey), ring roads (the two
circles around the city center in white), the close suburb (dark grey), the far suburb (the
part with no color) and the highways (the dots connecting the suburb to the city center).

Figure 8: Traffic sensors’ road coverage.
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Ring road stations

City center stations

Paris (city center)

Paris (close suburbs)

Sample construction For traffic observations from the highways connecting the far suburb
to the city center, we restrict the sample to sensors that record traffic going in the direction
of the city center. We drop outliers in speed (below 0 or greater than the maximum highway
speed limit, 130 km/hr) and occupancy rates (below 0% and above 60%). An occupancy
rate of 60% represents extreme traffic conditions: the traffic monitoring institute in Paris
defines traffic as pre-saturated from 15% and saturated from 30%. We also detect inconsistent
observations using the fundamental relationship between traffic flow, occupancy rates, and
speed. More specifically, we combine the two equations above to get the implied average car
length from traffic flow, speed, and occupancy rate:

mean effective car length = occupancy rate× speed× no. lanes
traffic flow .

We then drop observations with a car-length lower than 3.6 meters (the length of a small city
car like Renault Twingo) and 18.75 meters (the size of a heavy truck). On the initial sample

35Source: https://opendata.paris.fr/explore/dataset/comptages-routiers-permanents
-historique/information/.
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of 8.9 million observations, we keep 6.2 million of them. These observations come from 654
traffic monitoring stations and constitute an unbalanced panel.

The data on the city center traffic and the ring roads contain sensor measurements of traffic
flows and occupancy rates only. Unfortunately, sensors cannot measure speed accurately
because of traffic lights and multiple intersections. We, therefore, estimate the speed using
the formula above, but this time used to express the unobserved speeds:

speed = traffic flow
occupancy rate

mean effective car length × no. lanes
.

Instead of relying on an assumption for the effective car length as often done in the literature
(e.g., Geroliminis and Daganzo, 2008 or Loder et al., 2017), we rely on the highway data
to predict the average car lengths in Paris. It has been documented by Jia et al. (2001)
that the traffic composition varies over time, making the uniform car length assumption
inappropriate. We rely on a prediction model for the car length that we estimate using the
highway data. Then, we use this model to predict hourly car lengths in the city center and
the ring roads. Our prediction model specifies the mean effective car length as a function
of the distance to the city center and day-of-the-week interacted with hour fixed effects.
Because the relationship between the car length and the distance to the city center may not
be constant as we get closer to the city center, we rely on a piecewise linear specification with
six intervals. This prediction model is estimated using 4.9 million observations from highway
data, for which we observe the GPS coordinates of the measurement stations and obtain an
R2 of 0.17. To predict the car length, we set the distance to the city center to 0. We then
get expected car lengths specific to the hour and the day of the week. Our predictions are
very realistic since they are all between 5.5 and 6.7 meters, with an average of 5.9 meters.
We do not directly observe the number of lanes in the city center traffic data, so we rely on
additional data from Open Street Map. Finally, we exclude outliers in occupancy rate and
estimated speed following the same criteria as before for the highway data.

C.3.2 Additional results for the congestion technology estimates

Fit of the congestion technology models Table 24 represents the number of observa-
tions used to estimate the congestion technologies for each area and the fit of the models,
measured by the R2. The three congestion technologies have good fits with R2 between 0.21
for the city center and 0.69 for the ring roads. The lower R2 in the city center probably reflects
more idiosyncrasies in traffic speed: traffic lights and intersections generate heterogeneous
traffic flows, implying heterogeneous speeds.
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Table 24: Fit of the congestion technology by area.
Area Number of observations R2

Highways 6,195,874 0.65
City center 8,013,979 0.21
Ring roads 1,907,088 0.69

Robustness analysis We perform a sensitivity analysis to check whether the estimates of
the congestion technologies are biased due to potential endogeneity issues. The concern is
that some speed shocks might also affect traffic density. Such shocks may be, for example,
weather conditions that change the incentives to drive (e.g., rain) and the speed (the rain
may reduce visibility, so drivers slow down). To check whether our estimated congestion
technologies are subject to such issues, we use hourly data on weather conditions in Paris
from OpenWeather to define an extreme weather event and drop these observations. We
define an extreme weather period as satisfying at least one of the following characteristics:
temperature below the 5% quantile (1.39◦C) or above the 95% quantile (25.28◦C), a rain
amount greater than the 95% quantile (0.46 mm/hr), snow or a wind speed above the 95%
quantile (20.5 km/hr). We find that the estimates are robust to excluding up to 39.5% of the
observations with an extreme weather condition within a three-hour window (see Figure 9).

Figure 9: Robustness checks - elimination of extreme weather conditions.
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(a) Highways.
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(b) City center.
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(c) Ring roads.

Next, we may worry that road or time unobserved heterogeneity cause an endogeneity
problem for the estimation of the congestion technologies. To check this, we allow the
congestion technologies to vary across stations or time. More specifically, we estimate
congestion technologies by subgroup and then aggregate them to construct an average
congestion technology. Since we approximate the speed functions by Bernstein polynomials
of order seven we can only consider subgroups with more than eight observations. The
aggregate congestion technologies are displayed in Figure 10. We see that adding road or
time heterogeneity do not substantially change the shapes of the congestion technologies.
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Figure 10: Robustness checks - congestion technologies estimated by subgroups.
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(a) Highways.
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(b) City center.
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(c) Ring roads.

C.3.3 Additional results for mapping between individual decisions and road
traffic levels

We evaluate the model’s fit by comparing the aggregate frequency of each transportation
mode observed in the data with the predicted frequency from our model. Table 25 below
shows the observed and predicted shares. The difference between Columns 1 and 2 comes only
from the winsorizing of a few speed shock outliers (below 1/2 or above 2). The trimming has
virtually no impact on the predicted shares. In column 3, we solve for the equilibrium speeds
and individual choices using the full model. Since we calibrate the mapping parameters by
imposing constraints, we do not exactly match the initial occupancy rates. However, our
model predicts transportation mode shares close to the observed shares.

Table 25: Shares of transportation modes observed and predicted by the model.
Observed Predicted Predicted

initial speeds full model
Bicycle 2.1 2.1 2.09
Pub. transport, peak 30.3 30.3 30.3
Pub. transport, off-peak 14.5 14.6 14.6
Motorcycle 2.08 2.08 2.08
Walking 15.8 15.8 15.8
Car, peak 22.9 22.8 22.9
Car, off-peak 12.3 12.3 12.3
Note: in %.

Table 26 shows the comparison between the average speeds from traffic data and those
predicted from the model equilibrium. Our estimates are optimistic for the highways at peak
hours but pessimistic for ring roads and the city center. We nevertheless correctly predict
the speeds ranking between areas for both periods.
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Table 26: Predicted equilibrium speeds and average speeds from traffic data.
Peak hour Off-peak hour

Area Traffic Eq. speeds Traffic Eq. speeds
Highways 44.9 65.2 67 85.4
City center 22.4 13.7 31.7 18.3
Ring roads 30.4 28.8 57.9 44.2
Close suburb 15.8 20.2
Far suburb 25.5 29.2
Note: in km/hr.

C.4 Additional results on the equilibrium solving algorithm

We show additional numerical results about the convergence by plotting the average number
of iterations needed to converge for the possible values of κ between 0.45 and 0.95. More
specifically, we draw 10 different initial speed values from a uniform distribution over [v,v]
and solve for the speed equilibrium with different values for the tuning parameter. As
expected, the number of iterations and the time increases exponentially from κ = 0.45 onward.
Furthermore, we always converged to the same equilibrium speeds regardless of the policy
environment. This shows that the choice of setting κ = 0.5 is efficient in terms of speed of
convergence.

Figure 11: Average number of iterations and convergence times (across 10 simulations).
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(b) Average convergence time.

D Additional results on the policy effects

D.1 Consumer surplus and welfare definitions

To evaluate the impacts of transportation policies on individuals, we rely on changes in
consumer surplus, which measure compensating variations. The consumer surplus per trip for
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individual n is defined as the expected utility of the choice that maximizes the utility and is:

CSn = 1
|αn|

log
∑
j∈Jn

exp(σ log(Dnj))
+ Cn,

where Dnj = ∑T
t=1 exp

(
β′

nXnjt

σ

)
is the expected utility of the best departure period for

transportation mode j. Cn represents a constant utility term that cannot be identified, and
αn is the parameter of sensitivity to the trip cost, which converts the utility into monetary
terms. The consumer surplus level is not identified, but the variation of consumer surplus
eliminates the constant Cn and thus is identified and given by:

∆CSn = 1
|αn|

log
∑
j∈J 1

n

exp(σ log(D1
nj))

− log
∑
j∈J 0

n

exp(σ log(D0
nj)
 .

Where J 1
n and D1

nj represent respectively the choice set and the expected utility of
transportation mode j under the counterfactual scenario, while J 0

n and D0
nj represent their

initial values. We can further decompose the variation in consumer surplus into a partial
policy effect which measures the policy effect at constant initial speeds, and an equilibrium
speed effect under the implemented policy. To make the expression clearer, we make apparent
the dependence between the driving speeds and the utilities associated with the transportation
modes D0

nj(v0) and D1
nj(v1), where v0 and v1 represent the initial and final vectors of speeds.

The decomposition is given by:

∆CSn = 1
|αn|

 log
∑
j∈J 1

n

exp
(
σ log

(
D1
nj(v0)

))− log
∑
j∈J 0

n

exp
(
σ log

(
D0
nj(v0)

))
︸ ︷︷ ︸

policy effect at constant speed

+ log
∑
j∈J 1

n

exp
(
σ log

(
D1
nj(v1)

))− log
∑
j∈J 1

n

exp
(
σ log

(
D1
nj(v0)

))
︸ ︷︷ ︸

equilibrium speed effect



The total consumer surplus change is then obtained by summing individual surplus changes
over individuals.

We consider two welfare measures. The first is simply the sum of consumer surplus change
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and the potential toll revenue:

W1 =
N∑
n=1

ωn

∆CSn +
∑
j∈J 1

n

T∑
t=1

µnjts
1
njt

 ,
where µnjt is the toll for individual n, transportation mode j and period t, and s1

njt represents
the transportation mode choice probability under the counterfactual policy. We consider a
second welfare measure which includes consumer surplus change, tax revenue, and the change
in emissions valued at standard levels:

W2 =
N∑
n=1

ωn

∆CSn +
∑
j∈J 1

n

T∑
t=1

µnjts
1
njt +

∑
j∈J 1

n

T∑
t=1

λnjt
(
s1
njt − s0

njt

) ,
where λnjt represents the cost of emissions for individual n, transportation mode j and period
t.

D.2 Importance of endogenous speeds

In Figure 12, we compare our model’s predictions for car shares with those from a naive
model that would consider speeds and trip durations fixed. All scenarios and stringency levels
deliver the same biases under exogenous speeds: we overestimate the number of individuals
substituting away from using their cars at peak hours and underestimate those who choose
to drive at off-peak hours. The equilibrium speed effects indeed dampen incentives to stop
driving.

Figure 12: Predicted car shares as function of the policy stringency level.
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(b) Uniform tolls.
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(c) Variable tolls.

We provide the equilibrium speeds for three areas for all policy stringency levels in Figure
13. At peak hours, the speeds increase with the policy stringency level, while at off-peak
hours, they decrease monotonically. This is the consequence of major shifts towards driving
at off-peak hours. The speed at peak hours changes the most on the highways while there is
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much less speed improvement in the city center. At the same time, the off-peak hour speed
in the city center is almost constant. This reflects that individuals driving in the city center
have better alternatives to cars, while those who use the highways and the ring roads are
more likely to substitute for driving during off-peak hours.

Figure 13: Speeds under the different policies and stringency levels.
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(a) Driving restrictions.
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(b) Uniform tolls.
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(c) Variable tolls.
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(d) Driving restrictions.
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(e) Uniform tolls.
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(f) Variable tolls.

To further highlight the importance of taking into account the equilibrium speed adjustments,
we compare the tax revenues predicted under constant speeds with the predictions from our
model. The results, in Figure 14 below, suggest that not accounting for the changes in speeds
significantly underestimates the number of individuals paying the toll and the tax revenue.
Moreover, the magnitude of the bias increases with the policy stringency levels, reflecting
the increasing role of speed adjustments. In addition, we note that the tax revenues follow
a Laffer curve under both toll types and decrease when the toll levels are too high. This
maximum level is attained more rapidly for the uniform toll than the variable.
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Figure 14: Predicted tax revenues under tolls at peak hours.
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(a) Uniform tolls.
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(b) Variable tolls.

D.3 Additional results for the benchmark policy levels

Modal shift The aggregate shares of transportation modes are reported in Table 27. They
indicate a significant inter-temporal modal shift towards driving at off-peak hours. The share
of car users at peak hours drops under all policies, but the magnitudes differ. For example,
while driving restrictions and uniform tolls decrease the number of car users by 8.3 to 8.9
percentage points, the variable toll only decreases it by 2.9 percentage points. This is because
the variable toll discourages individuals with long distances from driving and keeps the
number of drivers relatively high. For the same reason, we also observe essential differences in
the modal shifts across policies: driving restrictions and the uniform toll increase the fraction
of individuals who walk and take public transport more than the variable toll.

Table 27: Predicted shares of the transportation modes under different policies.
Initial Driving Uniform Variable

restriction toll toll
Bicycle 2.09 2.3 2.34 2.09
Pub. transport, peak 30.3 32.2 32.7 31.4
Motorcycle 2.08 2.44 2.49 2.31
Walk 15.8 17.1 17.4 15.8
Car, peak 22.9 14.6 14 20
Car, off-peak 12.3 15.9 15.4 13.3
Pub. transport, off-peak 14.6 15.4 15.6 15.1
Total car share 35.2 30.6 29.4 33.2
Total pub. transport share 44.8 47.5 48.3 46.6
Note: in %.

Impacts on individual trip durations We complement the analysis by looking at how
the policies impact the expected travel times in Table 28 below. There is an enormous
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difference in the total travel time increase across policies: under the variable toll, it is only
2.3 thousand hours against 25 to 29 thousand hours under the uniform toll and the driving
restriction. This reflects the extensive substitution for driving at off-peak hours under the
variable toll. It further indicates that the surplus losses from the variable toll are mainly
related to the surplus loss from driving outside peak hours and paying high tolls than an
increase in travel time. The distribution of changes in travel time under all policies is skewed
towards more extensive trips. For instance, the maximum time reductions are always lower
than the maximum increases in travel time. This skewness is more pronounced under the
variable toll, associated with a maximal duration increase of 41 minutes versus 24 to 27
minutes for the two other policies. Under the three policies, some individuals reduce their
expected trip durations. The variable toll has the largest share of individuals with reduced
travel times, with 56% of the individuals versus 28% and 29% under the two other policies.

Table 28: Trip duration variation under alternative policies.
Driving Uniform Variable

restriction toll toll
Min ∆duration -10.4 -13 -10.9
Mean ∆duration 0.371 0.423 0.034
Max ∆duration 24.4 26.9 40.5
Total ∆duration (in 1,000 hrs) 24.9 28.5 2.32
% ∆duration > 0 50.4 51.9 23.7
% ∆duration < 0 29.3 27.9 56
Note: ∆ durations are in minutes, except “Total ∆ duration”.

Speed changes We analyze the speed changes for the different areas in Table 29. The
variable toll most improves the speed on the highways at peak hours. The variable toll is
also better than the driving restriction to improve the speed on the ring roads at peak hours.
However, it raises speeds in the city center and the suburbs the least at peak hours. This
occurs because the individuals who drive on the highways and ring roads have long distances
and are discouraged from using their cars at peak hours. But since they do not have good
transportation alternatives, they drive during off-peak hours. This is consistent with the
highest speed reduction at off-peak hours under the variable toll. The uniform toll is the
policy that enhances the speeds at peak hours in the city center, the ring roads, and the close
suburb the most. Across the three regulations, the area with the smallest improvements is
the far suburbs, revealing a lack of good car alternatives. For instance, public transport offers
poor coverage in the distant suburb. The speeds at off-peak hours decrease in all areas but
remain higher than the initial levels at peak hours. This reflects the imperfect substitution
between driving at peak and off-peak hours, which avoids having a simple shift of the peak
hour period.
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Table 29: Predicted speeds under the different policies.
Area Initial Driving Uniform Variable

restriction toll toll
Peak hours Highways 65.2 82.7 82.3 87

City center 13.7 17.2 18.6 15.8
Ring roads 28.8 41.7 45.7 43.7
Close suburb 15.8 19.6 20.4 17.9
Far suburb 25.5 28.4 28.2 27.6

Off-peak hours Highways 85.4 75.9 78.4 74.1
City center 18.3 17.6 17.6 18
Ring roads 44.2 41.6 42 41.8
Close suburb 20.2 18.8 18.9 19.6
Far suburb 29.2 27.1 27.5 27.7

Note: in km/hr.

Marginal costs of congestion Table 30 presents the marginal congestion costs for each
area and period under the different policies. We provide the marginal costs associated with
adding one average driver in each area to account for differences in area sizes. The driving
restriction and uniform toll reduce the marginal congestion costs across all areas at peak
hours. However, we observe an increase in the marginal costs of congestion in the city center
and the close suburb at peak hours under the variable toll. The cost increases are lower than
8%, and we can observe the opposite pattern at off-peak hours, where the costs decrease in
the same two areas and the far suburb. This occurs because the speed improvements make
individual trip durations lower, increasing and in turn increase their marginal valuations
of duration. Thus, having an additional driver on the road raises the surplus losses for
individuals. The marginal costs on the highways and the ring roads are the most reduced by
the policies.

Table 30: Marginal costs of congestion under the different policies.
Area Initial Driving Uniform Variable

restriction toll toll
Peak hours Highways 1.14 0.493 0.507 0.412

City center 1.58 1.35 1.3 1.7
Ring roads 2.09 1.29 1.09 1.3
Close suburb 1.29 1.07 1.04 1.39
Far suburb 0.582 0.394 0.403 0.575

Off-peak hours Highways 0.415 0.753 0.662 0.762
City center 1.26 1.3 1.3 1.19
Ring roads 1.19 1.31 1.29 1.22
Close suburb 1.04 1.12 1.12 0.975
Far suburb 0.339 0.509 0.486 0.39

Note: costs associated to adding an average driver, in e.
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D.4 Differentiated tolls

This section investigates the consequences of applying differentiated tolls. First, we study
the welfare-maximizing personalized tolls. Second, we consider tolls that depend on the areas
where individuals drive. Finally, we analyze combinations of fixed and variable tolls.

Welfare-maximizing personalized tolls In addition to comparing benchmark policy
levels, we investigate the gains from welfare-maximizing personalized tolls for any traffic level
achieved. Figure 15 below shows the variation in aggregate welfare relative to the initial
equilibrium for any traffic reduction level under personalized tolls. We observe that the
optimal traffic reduction is slightly below the one achieved with a variable toll.
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Figure 15: Welfare changes from personalized tolls maximizing W2.

Area-specific tolls We consider a toll that takes two different values: one for the city
center and ring roads and one for the highways and the close and far suburbs. This policy
instrument is similar to a cordon pricing mechanism. We determine all the toll combinations
that imply the same objective traffic at peak hours and find the best toll combination for
different objectives. When individuals drive through the two toll zones, we assume they only
pay the highest toll.36 Area-specific tolls might incentivize individuals to change their route
choice. Still, we believe that the relatively large definition of areas in our setup considerably
limits this potential effect.

The left graph in Figure 17 shows all the combinations of road tolls that achieve the
same objective traffic at peak hours. The right graph in Figure 16 provides the change in

36Alternatively, we could assume individuals driving through the two toll areas pay the sum of the tolls,
but this situation would not nest the benchmark uniform toll.
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total welfare (measured by the sum of consumer surplus and tax revenue minus the cost of
emissions) for different toll values in the suburb. First, the uniform toll is not too far from
the tax revenue-maximizing toll combination. The welfare is maximized for the combination
of e2.15 in the suburb and e4.06 in the city center; it multiplies the total welfare gain from
the uniform toll by two. We also provide the toll values that maximize consumer surplus
(both with and without redistributive weights); they set a low toll value in the suburb (e1)
and a high value of e14.7 inside the city center.

Figure 16: Differentiated tolls and their welfare impacts.
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(b) Welfare (W2).

Combination of fixed and variable tolls We now consider another way to define tolls,
given by a fixed and a variable part. We allow for negative values of the two components
of the toll. Interestingly, the best toll value for consumer surplus has the lowest fixed and
highest variable parts. This means that individuals receive a fixed amount when taking their
car but pay a high fee for each kilometer driven. Since individuals with short trips have
higher valuations of travel time than individuals with more extended trips, their gains largely
compensate for the losses of long-distance commuters and their high toll values, achieving
the maximum aggregate surplus. However, this combination of road tolls is not efficient at
raising tax revenue. This is why the best combination, from a welfare perspective (defined
as the sum of the aggregate surplus and the tax revenue minus the costs of emissions), is a
toll with a smaller variable part than our benchmark variable toll (7 cents/km instead of
9 cents/km) and a moderate fixed amount of e0.73. This toll combination would improve
the welfare gains by 13.3%. We could reach the maximum tax revenue with the high fixed
value of e3.2 and a negative variable part (-0.2 cents/km). This combination of tolls would
however be welfare-decreasing, as Figure 17 (b) suggests.
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Figure 17: Combination of fixed and variable tolls and their welfare effects.
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D.5 Auctioned driving license

We consider a simple uniform second-price auction format, which implies that individuals
bid their true license valuation. The equilibrium price is the highest rejected bid associated
with a fixed number of licenses. Individual valuations are equal to the difference between the
expected utilities with and without the right to drive, and we assume individuals perfectly
anticipate the speed improvements. However, they do not know their preference shocks
before submitting their bids. Thus, the willingness to pay includes the gain in utility from
better speeds at peak hours. We use an iterative algorithm to solve for the license price
together with the equilibrium speeds for a given quota of driving licenses. Our algorithm
cannot find a stable equilibrium for some values of the quota of driving licenses. This occurs
when we consider stringent policies (i.e., with a low number of permits) where the speed
gains are significant. We thus select the quota of driving licenses that implies the closest
outcome to the one obtained in our main policies. Then, we re-calibrate the uniform toll to
match the traffic reduction across policies. We thus analyze policies that are milder than
before since they trigger a decrease in traffic at peak hours of 25.2%. This policy seems more
suited to a comparison with the uniform toll, as they both put a price on the right to drive.
However, there is an essential difference from the perspective of individuals. Under the toll,
individuals decide to drive and pay the toll after they receive their preference shocks for the
transportation modes and departure times. While under the auction, individuals have to
submit their bid for the license before receiving their preference shocks and lose the ability
to react in case of extreme preference shocks. We provide the policy parameters in Table
31 below. We find a uniform toll of e1.89, higher than the license price of e1.30. Since
individuals do not know their mode and departure period preference shocks when bidding,
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they have moderate valuations for the driving license.

Table 31: Parameters for the driving license quota and equivalent uniform toll policies.
Policy type Parameter Value
License Quota of licenses 31.1%

License price 1.30
Uniform toll toll 1.89
Note: License price and toll in e/trip.

Since individuals who get the license pay for it regardless of how often they decide to
drive at peak hours, the policy generates considerably higher surplus losses. Individuals can
no longer react to good or bad realizations of their preference shocks for driving. Indeed,
the driving license regulation causes 66% more surplus losses than the uniform toll. The
two policies generate comparable tax revenue of around e1.3 million. Under tax revenue
redistribution, the quota of driving licenses causes a net welfare loss of e0.6 million, while
the uniform toll is welfare enhancing.

However, we can see that the driving license quota is more effective than the toll to reduce
emissions: we obtain 54% more reduction in CO2 emissions and 58% more reduction in
emissions of local pollutants. Despite the important environmental effect, once converted in
monetary terms, the emissions gains do not offset higher surplus losses from the quota of
licenses since our second welfare measure is also higher under the uniform toll. Both with
and without the redistribution of the tax revenue, the average cost of reducing emissions
is lower under the uniform toll. From a distributional point of view, both policies seem to
have similar effects, generating identical shares of losers and virtually no winners. The total
consumer surplus losses are very similar with or without the redistributive weights, indicating
that the driving license quota is not a regressive regulation.

Table 32: Driving license versus uniform toll.
Uniform toll License

Total ∆CS (Me) -1.14 -1.9
∆CS, constant speed -1.37 -0.997
∆CS from speed 0.23 -0.907

Total ∆wCS (Me) -1.18 -1.95
Tax revenue (Me) 1.28 1.31
∆W1 = ∆CS + Tax revenue (Me) 0.142 -0.592
∆W2 = ∆CS + tax rev. - ∆E (Me) 0.169 -0.55
∆CO2 (ton) -285 -440
∆eqNOX (ton) -1.19 -1.88
Implied cost local pollutants (e/ton NOX)
Without redistribution 956,790 1,015,204
With redistribution -119,543 315,530
% ∆CS > 0 0 0.133
% ∆CS < 0 79.7 79.6
Note:“∆E” are changes in emissions valued at standard levels.
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D.6 Robustness checks for the policy simulations

D.6.1 All-day policies

In this section, we analyze the impacts of policies applied during the whole day. As before,
we first apply driving restrictions with a probability of 0.5 and then calibrate the uniform
and variable tolls to obtain the same total traffic reduction. This time the traffic is calculated
by the sum of kilometers driven at peak and off-peak hours. The parameters are provided in
Table 33 below and show that the tolls are much larger than when the policies are applicable
at peak hours only. Since 4.06% of the individuals in our sample do not have an alternative
to cars, we allow them to be non-compliant to the regulation. In exchange, they pay a fee
of e68. This value is inspired by the fine for breaking the driving restriction rule applied
to Paris in 2016. This value is also a proxy for the cost of using a taxi instead of the driver
using their own car. We only allow those without alternatives to be non-compliant in the
main analysis.

Table 33: All-day policy parameters.
Outcome matched Driving restriction Uniform toll Variable toll
Distance, peak and off-peak hours 50% 4.26 0.20
Note: Uniform toll in e, and variable toll in e/km.

Modal shifts Table 34 presents the predicted shares for each transportation mode under
the different policies. Under such strict regulations, we observe significant modal shifts away
from cars toward other transportation modes. The variable toll implies more substitution for
public transport and less substitution for walking than the other policies. This is because
variable tolls discourage individuals with long commutes, who typically cannot walk to work.

Table 34: Predicted shares of the transportation modes under all-day policies.
Initial Driving Uniform Variable

restriction toll toll
Bicycle 2.09 3.82 2.65 2.11
Pub. transport, peak 30.3 35.3 36.5 34.2
Motorcycle 2.08 3.1 3.26 2.97
Walk 15.8 19.6 19.1 16
Car, peak 22.9 14.1 13.9 19.1
Car, off-peak 12.3 6.92 6.95 9.14
Pub. transport, off-peak 14.6 17.2 17.7 16.6
Total car share 35.2 21 20.8 28.2
Total pub. transport share 44.8 52.5 54.2 50.8
Note: in %.
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Welfare impacts Table 35 shows the welfare impacts of the three all-day policies. Surplus
losses from all-day policies are considerably higher than from peak-only policies. These results
highlight the effect of closing the inter-temporal substitution channel that allows individuals
to keep driving. These strict policies decrease the total consumer surplus by e2.8 million to
e7 million, depending on the type of policy in place. We specifically observe exceptionally
high losses from driving restrictions, but this is linked to the fine for non-compliance. This
policy raises e3.4 million from the non-compliance penalties. As before, we find differences in
the tax revenue raised by the different policies. The uniform toll collects more toll payments
than the variable toll. Yet, the tax dividend does not compensate for the surplus losses like
under the peak-hour uniform toll.

We can also observe that strict policies are much more effective at reducing emissions than
the mild policies, applied at peak hours only. Indeed, the strict regulations lead to at least
three times more reduction. As a consequence, the welfare measures increase by roughly e0.1
million when we include the values of emission reductions. We find that the average cost
ranking of the policies is the same as before: we obtain very high costs for driving restrictions
but reasonable costs for the uniform tolls.

Table 35: Consumer surplus variation under all-day policies.
Driving Uniform Variable

restriction toll toll
Total ∆CS (Me) -6.44 -3.74 -2.57

∆CS, constant speed -7.07 -4.38 -3.26
∆CS from speed 0.638 0.642 0.696

Total ∆wCS (Me) -7.01 -3.92 -2.8
Tax revenue (Me) 3.43 3.58 2.82
∆W1 = ∆CS + tax revenue (Me) -3.01 -0.159 0.257
∆W2 = ∆CS + tax rev. - ∆E (Me) -2.91 -0.058 0.357
% ∆CS > 0 0.075 0 11.9
% ∆CS < 0 79.7 79.7 67.8
∆ CO2 (ton) -1,055 -1,067 -1,055
∆ eqNOX (ton) -4.43 -4.47 -4.41
Implied cost CO2 (with redist) 2,849 149 -244
Implied cost eqNOX (with redist) 678,669 35,621 -58,243
Note: “∆E” are changes in emissions valued at standard levels.

D.6.2 Increase in public transport overcrowding

We compare the benchmark variable toll and two scenarios where the policy is followed by a
15% or a 30% increase in the overcrowding levels in public transport. Table 36 presents the
impact of these policies on consumer surplus and aggregate welfare. In the two scenarios, the
total surplus loss would be 9% and 18% higher, highlighting the limited role of public transport
overcrowding. Moreover, tax revenues remain almost constant under the three scenarios since
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the share of individuals driving is barely affected by the change in the overcrowding level.
Finally, the welfare outcomes decrease by between 28% and 66%, mainly because of the larger
surplus losses. Yet, we still obtain a positive effect from the variable toll.

Table 36: Policy effects with overcrowding level changes in public transit.
Overcrowding Overcrowding Overcrowding

constant +15% +30%
Total ∆CS (Me) -0.691 -0.754 -0.817

∆CS, constant speed -0.931 -0.986 -1.04
∆CS from speed 0.24 0.232 0.224

Total ∆wCS (Me) -0.752 -0.812 -0.872
Tax revenue (Me) 0.872 0.875 0.877
∆ W1 = ∆CS + Tax revenue (Me) 0.181 0.12 0.06
∆W2 = ∆CS + tax rev. - ∆E (Me) 0.212 0.151 0.09
∆ CO2 (ton) -330 -322 -313
∆ eqNOX (ton) -1.37 -1.34 -1.31
Note: “∆E” are changes in emissions valued at standard levels.

D.6.3 Change in travel time reliability

We study the robustness of our policy effect predictions by including the sensitivity to travel
time reliability in the transportation choice model. To do so, we take the model parameters
in Column (3) of Table 21 in Appendix C.1 and measure the impacts of the benchmark
variable toll. We modify the reliability values in the following way: the standard deviation
of travel time decreases by 46.5% for everyone at peak hours while it increases by 11.9% at
off-peak hours. These values correspond to the maximum percentage speed increase in an
area for peak hours and the maximum speed decrease for off-peak hours. We believe these
values correspond to an extreme case with large changes in reliability levels. What we do
here is different from considering reliability an equilibrium outcome, but it is informative on
the importance of endogenizing reliability for the welfare results.

Table 37 shows the predicted shares for each transportation mode. Across the different
scenarios, we see that including reliability and modifying its value have little impact on the
predicted shares for the different transportation modes. The inclusion of reliability increases
car usage at peak hours by less than 1%. These results suggest that the role of travel time
reliability is limited for individual transportation decisions.
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Table 37: Shares of transportation modes under the variable toll with different reliability scenarios.
Mode Benchmark Constant Updated

reliability reliability
Bicycle 2.09 2.09 2.09
Pub. transport, peak 31.4 31.3 31.1
Pub. transport, off-peak 15.1 15.1 15
Motorcycle 2.31 2.29 2.26
Walk 15.8 15.8 15.8
Car, peak 20 20.3 20.8
Car, off-peak 13.3 13.1 12.9
Total car 33.2 33.4 33.8
Total pub. transport 46.6 46.4 46.1
Note: for ‘updated reliability’, the standard deviation of travel time decreases by
46.5% at peak hours and it increases by 11.9% at off-peak hours.

Table 38 presents the welfare impacts of the variable toll with and without accounting
and updating the reliability measures. Overall, the aggregate surplus changes remain in
the same order of magnitude. The difference in results between our benchmark and the
model with constant reliability comes from the fact that we use different sets of demand
parameters. These differences are not excessive, indicating that the two models do not deliver
very different policy predictions. More relevant to understanding the value of improved
reliability is to compare the welfare effects of the variable toll under constant reliability and
the model where we update the values of travel time reliability. We see a net surplus gain
from improved reliability at peak hours evaluated at e0.09 million. This scenario also results
in a larger tax revenue since more individuals prefer paying the toll for the improved speeds
and reliability at peak hours. In the end, we estimate a net benefit of the variable toll to
be e0.42 million, which is 50% higher than without the improvement in reliability at peak
hours. Improving reliability increases the share of winners by only 2.7 percentage points.

Table 38: Consumer surplus variation from variable tolls under different reliability scenarios.
Mode Benchmark Constant Updated

reliability reliability
Total ∆CS (Me) -0.691 -0.617 -0.532

∆CS, constant speed -0.931 -0.82 -0.725
∆CS from speed 0.24 0.203 0.193

Total ∆wCS (Me) -0.752 -0.668 -0.584
Tax revenue (Me) 0.872 0.876 0.935
∆W1 = ∆CS + Tax revenue (Me) 0.181 0.259 0.402
∆W2 = ∆CS + tax rev. - ∆E (Me) 0.212 0.288 0.427
% ∆CS > 0 18.9 15.4 18.1
% ∆CS < 0 60.8 64.4 61.6
Note: for ‘updated reliability’, the standard deviation of travel time decreases by 46.5% at
peak hours and it increases by 11.9% at off-peak hours. “∆E” are changes in emissions
valued at standard levels.

82


	Introduction
	A structural model of transportation decisions and traffic conditions
	Transportation mode choice model
	Road traffic conditions and congestion technology
	Equilibrium of the model

	Specification and estimation of the transportation choice model
	Data, sample selection and choice set characteristics
	Model specification and estimation results
	Values of travel time and substitution across modes and periods

	Estimation of the road traffic congestion technologies
	Data and sample selection
	Estimates of the congestion technologies
	Mapping between individual decisions and initial traffic conditions
	Check of the equilibrium uniqueness
	Value of driving and marginal costs of congestion

	Quantifying the welfare consequences of the regulations
	Analysis of different policy levels
	Comparison across policies at a benchmark level

	Mitigating the surplus losses
	Welfare-maximizing personalized tolls
	Attribute-based driving restrictions
	Improving public transport

	Discussion about the scope of the model
	Conclusion
	Additional results on the uniqueness of the model equilibrium
	Special cases
	One period, one area
	Multiple periods, one area

	General model

	Additional information on data and sample construction
	Information about the data
	Car fuel consumption and emissions
	Baseline estimation method
	Alternative method for emissions estimates

	Cost estimation
	Public transport
	Cars and motorcycles

	Public transport overcrowding
	Real estate values
	Descriptive statistics of the final sample

	Additional estimation results
	Robustness checks for the transportation mode choice model
	Additional results
	Traffic sensor data and congestion technology estimates
	Traffic sensor data
	Additional results for the congestion technology estimates
	Additional results for mapping between individual decisions and road traffic levels

	Additional results on the equilibrium solving algorithm

	Additional results on the policy effects
	Consumer surplus and welfare definitions
	Importance of endogenous speeds
	Additional results for the benchmark policy levels
	Differentiated tolls
	Auctioned driving license
	Robustness checks for the policy simulations
	All-day policies
	Increase in public transport overcrowding
	Change in travel time reliability



